精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,点P(n,Sn)和点Q(n+1,Sn+1)(n∈N+)形成的直线的斜率是关于n的一次关系式3n-2,则a2+ a3+ a7+a8的值等于

A.52
B.40
C.26
D.20
相关习题

科目:高中数学 来源:模拟题 题型:单选题

已知数列{an}的前n项和为Sn,点P(n,Sn)和点Q(n+1,Sn+1)(n∈N+)形成的直线的斜率是关于n的一次关系式3n-2,则a2+ a3+ a7+a8的值等于
[     ]
A.52
B.40
C.26
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).
(1)求数列{an}的通项;
(2)若数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上,记{bn}的前n项和为Tn,当n≥2时,试比较2Sn与Tn+n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2;数列{bn}的首项为1,点P(n,bn)都在斜率为2的同一条直线l上(以上n∈N*).
求:(1)数列{an}、{bn}的通项公式;
(2)求数列{abn}、{ban}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,对任意n∈N*,点(n,Sn)都在函数f(x)=2x2-x的图象上.
(1)求数列an的通项公式;
(2)设bn=
Sn
n+p
,且数列bn是等差数列,求非零常数p的值;
(3)设cn=
2
anan+1
,Tn是数列cn的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3…),数列{bn}中,b1=1,点P(bn,bn+1)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式an和bn; 
(2)设cn=an•bn,求数列{cn}的前n项和Tn,并求满足Tn<167的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an} 的前n项和为Sn,且Sn=2an-2,(n=1,2,3,…);数列 {bn}中,b1=1,点p(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an} 和 {bn}的通项公式;
(Ⅱ)设数列{
bn+1
2
}的前n和为Sn,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设数列{cn}的前n项和为Tn,且cn=an•bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2,(n=1,2,3,…);数列{bn}中,b1=1 点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an•bn}的前n和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{an}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ) 求数列{an},{bn}的通项公式an和bn
(Ⅱ) 设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>


同步练习册答案