精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,求Tn
分析:(1)由Sn=2an-2得:Sn-1=2an-1-2(n≥2),两式相减可得an=2an-1(n≥2),再求得a1=2,可知数列{an}是以2为首项,2为公比的等比数列,从而可求an=2n;点P(bn,bn+1)在直线x-y+2=0上,可知bn+1-bn=2,又b1=1,从而可求得{bn}的通项公式;
(2))Tn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n①,2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1②,错位相减即可求得Tn
解答:解:(1)由Sn=2an-2得:Sn-1=2an-1-2(n≥2),
两式相减得:an=2an-2an-1,即
an
an-1
=2(n≥2),
又a1=2a1-2,
∴a1=2,
∴数列{an}是以2为首项,2为公比的等比数列,
∴an=2n
∵点P(bn,bn+1)在直线x-y+2=0上,
∴bn+1-bn=2,
∴数列{bn}是等差数列,
∵b1=1,
∴bn=2n-1;
(2)Tn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n
∴2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1
①-②得:-Tn=1×2+2(22+23+…+2n)-(2n-1)×2n+1
=2+2×
4(1-2n-1)
1-2
-(2n-1)×2n+1
=2+2×2n+1-8-(2n-1)×2n+1
=(3-2n)2n+1-6,
∴Tn=(2n-3)2n+1+6.
点评:本题考查等差数列与等比数列的通项公式,考查等比关系的确定与错位相减法求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案