精英家教网 > 高中数学 > 题目详情
已知等差数列{an}、{bn}的公差分别为2和3,且bn∈N*,则数列{abn}是

A.等差数列且公差为5
B.等差数列且公差为6
C.等差数列且公差为8
D.等差数列且公差为9
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有
c_
b1
+
c2
b2
+…+
cn
bn
=an+1成立,求c1+c2c3+…+c2012

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)求数列{an}、{bn}的通项公式an、bn
(Ⅱ)设cn=
anbn
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an}、{bn}的通项公式;
(2)设Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第5课时练习卷(解析版) 题型:解答题

已知等差数列{an}满足:an1>an(n∈N*)a11数列的前三项分别加上113后顺次成为等比数列{bn}的前三项.

(1)分别求数列{an}{bn}的通项公式;

(2)Tn(n∈N*)Tn<c(c∈Z)恒成立c的最小值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有
c_
b1
+
c2
b2
+…+
cn
bn
=an+1成立,求c1+c2c3+…+c2012

查看答案和解析>>

科目:高中数学 来源:2004-2005学年北京市东城区高三(上)期末数学试卷(解析版) 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项.
(I)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}对任意正整数n均有+++…+=(n+1)an+1成立,其中m为不等于零的常数,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市岱山县大衢中学高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有++…+=an+1成立,求c1+c2c3+…+c2012

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉市部分学校高三(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有++…+=an+1成立,求c1+c2c3+…+c2012

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛一中高三(上)1月调研数学试卷(文科)(解析版) 题型:解答题

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N+均有++…+=an+1成立,求c1+c2c3+…+c2012

查看答案和解析>>


同步练习册答案