精英家教网 > 高中数学 > 题目详情
函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是(  )
A.0B.1C.2D.1或2
相关习题

科目:高中数学 来源: 题型:

9、函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省杭州市七校联考高一(上)期中数学试卷(解析版) 题型:选择题

函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是( )
A.0
B.1
C.2
D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x(ex-1)-x2(x∈R).
(1)求证:函数f(x)有且只有两个零点;
(2)已知函数y=g(x)的图象与函数h(x)=-
1
2
f(-x)-
1
2
x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);
(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南师大附中高三第三次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=2x(ex-1)-x2(x∈R).
(1)求证:函数f(x)有且只有两个零点;
(2)已知函数y=g(x)的图象与函数h(x)=-f(-x)-x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);
(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南师大附中高三第三次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=2x(ex-1)-x2(x∈R).
(1)求证:函数f(x)有且只有两个零点;
(2)已知函数y=g(x)的图象与函数h(x)=-f(-x)-x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);
(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2x(ex-1)-x2(x∈R).
(1)求证:函数f(x)有且只有两个零点;
(2)已知函数y=g(x)的图象与函数h(x)=-数学公式f(-x)-数学公式x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);
(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
③若m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④满足条件AC=
3
,∠B=60°,AB=1的三角形△ABC有两个;
⑤函数y=(1+x)的图象与函数y=(1-x)的图象关于y轴对称.
其中正确命题的个数是
①③⑤
①③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
③若m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=
3
,∠B=60°
,AB=1的三角形△ABC有两个.
其中正确命题的个数是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区二模)若直角坐标平面内P、Q两点满足条件:①点P、Q都在函数f(x)的图象上;②点P、Q关于原点对称,则称(P、Q)是函数f(x)的一个“和谐点对”(点对(P、Q)与(Q、P)可看做同一个“和谐点对”).已知函数f(x)=
-2x+
3
2
(x>0)
-x2-2x(x≤0)
,则f(x)的“和谐点对”有(  )

查看答案和解析>>


同步练习册答案