精英家教网 > 高中数学 > 题目详情
“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是(  )
A.(1)(2)(3)(4)B.(3)(4)(2)(1)C.(3)(4)(1)(2)D.(3)(4)(2)(1)
相关习题

科目:高中数学 来源: 题型:

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是(  )
A.(1)(2)(3)(4)B.(3)(4)(2)(1)C.(3)(4)(1)(2)D.(3)(4)(2)(1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是(  )
A.(1)(2)(3)(4)B.(3)(4)(2)(1)C.(3)(4)(1)(2)D.(3)(4)(2)(1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省东莞七中高二(下)3月月考数学试卷(文科)(解析版) 题型:选择题

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是( )
A.(1)(2)(3)(4)
B.(3)(4)(2)(1)
C.(3)(4)(1)(2)
D.(3)(4)(2)(1)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是


  1. A.
    (1)(2)(3)(4)
  2. B.
    (3)(4)(2)(1)
  3. C.
    (3)(4)(1)(2)
  4. D.
    (3)(4)(2)(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

A、已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC.若AD=2,AE=1,求CD的长.
B.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程.
C.已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值.
D.证明不等式:
1
1
+
1
1×2
+
1
1×2×3
+L+
1
1×2×3×L×n
<2.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省南通市启东中学高三(下)5月月考数学试卷(解析版) 题型:解答题

A、已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC.若AD=2,AE=1,求CD的长.
B.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程.
C.已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值.
D.证明不等式:+++L+<2.

查看答案和解析>>


同步练习册答案