精英家教网 > 初中数学 > 题目详情
平面上有任意四点,经过其中两点画一条直线,共可画(  )
A.1条直线B.4条直线
C.6条直线D.1条或4条或6条直线
相关习题

科目:初中数学 来源: 题型:

6、平面上有任意四点,经过其中两点画一条直线,共可画(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

平面上有任意四点,经过其中两点画一条直线,共可画(  )
A.1条直线B.4条直线
C.6条直线D.1条或4条或6条直线

查看答案和解析>>

科目:初中数学 来源:第4章《视图与投影》易错题集(30):4.1 视图(解析版) 题型:选择题

平面上有任意四点,经过其中两点画一条直线,共可画( )
A.1条直线
B.4条直线
C.6条直线
D.1条或4条或6条直线

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

平面上有任意四点,经过其中两点画一条直线,共可画


  1. A.
    1条直线
  2. B.
    4条直线
  3. C.
    6条直线
  4. D.
    1条或4条或6条直线

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:

小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是(   )
A.9.5千公里B.千公里C.9.9千公里D.10千公里

(二)阅读《奇妙的警戒点》,完成第16~17题。(共6分)
奇妙的警戒点
一位军医,因治疗伤兵,已经几天几夜没有休息。在治疗间隙,他倒头呼呼大睡起来。突然从前线又运来了一批伤员,需要立即叫醒这个军医。可是,不管人们用手推他,还是往他脸上喷水,都难以让他醒来。最后,还是他的助手想出一招,在军医耳边轻轻地说:“伤兵又来了,请你起来动手术。”他毫不迟疑地一骨碌爬了起来,投入到紧张的工作之中。
这是什么原因呢?原来人在睡眠期间,整个大脑皮层都处于抑制状态,但其中也有某个不受抑制并处于兴奋状态的部位,这个部位被称作“警戒点”。警戒点的神经细胞没有被抑制,对外界保持着一定程度的警觉能力。通过警戒点,睡着的人可以和外界保持联系。
警戒点有两种形式。上面的例子,军医大脑的警戒点是通过外界的刺激而被唤醒的,自己本身并没有自动从睡梦中醒来,这种警戒点具有一定的被动性。形成被动警戒点的事情出现一般是不定时的,你不知道什么时候会发生,只知道这件事将来有可能要发生,所以只有等到它发生的时候,才会醒来。
此外还有主动性的警戒点,即不需外界的任何刺激或提醒,可以自动地从睡眠状态恢复到清醒状态,这种警戒点在大脑中的神经细胞处于高度的警戒状态。一般形成主动警戒点的事情是人们提前知道将来一定会发生的,而且知道什么时间将要发生,潜意识里已经做好了准备,这样在大脑中事先就预留了一块没有被抑制的区域,所以人们可以主动醒来。
大脑的警戒点是人类长期进化而形成的一种自我保护能力。在古代,人们经常受到野兽的威胁,即使睡觉时也要保持高度的警惕性。久而久之,人的大脑中便保持了一个奇妙的警戒点,这个警戒点甚至在人酣睡时也是清醒的,所以有的人形象地称之为“值勤哨”。
警戒点最初只是让人类在睡眠中可以自我保护,随着人类文明的进步,警戒点除了它最初的作用外,还可提醒人们注意到重要的事情,完成必要的任务。因此,人类的警戒点的作用就有了进一步的扩大。当人们需要完成关键的工作时,警戒点的钟声就会响起。
【小题1】.文章开头为什么要讲述一个军医的故事?(2分)
【小题2】.说出下面两则材料介绍的现象分别属于哪种形式的“警戒点”,并结合材料内容作简要说明。(4分)
【材料一】
在环境嘈杂、机器轰鸣的工厂里,工人们的劳动强度很大,有的工人甚至能在机器的轰鸣声中酣然入睡。奇怪的是,环境的嘈杂并不能吵醒他,而一旦机器声停止,环境安静下来,工人却可能马上醒来。
答:                                                                   
【材料二】
生活中,我们会碰到这样的情况。平日里我们可能六点钟起床,某日我们可能需要在凌晨四点钟起床去搭乘火车,在这种情况下,我们却很少因为睡过了头而延误火车。即使我们不用闹钟也能按时醒来,甚至提前醒来。
答:                                                                   

查看答案和解析>>

科目:初中数学 来源:中华题王 数学 九年级上 (北师大版) 北师大版 题型:059

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质,只要善于观察、乐于探索,我们会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个小三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形——平行四边形中,研究这个问题:已知:在ABCD中,O是对角线BD上任意一点(如图①)求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点.(如图②)

求证:________.

证明:

(3)在三角形中(如图③),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网先阅读短文,再回答短文后面的问题.
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
下面根据抛物线的定义,我们来求抛物线的方程.
如上图,建立直角坐标系xoy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.设|KF|=p(p>0),那么焦点F的坐标为(
p
2
,0),准线l的方程为x=-
p
2

设点M(x,y)是抛物线上任意一点,点M到l的距离为d,由抛物线的定义,抛物线就是满足|MF|=d的点M的轨迹.
∵|MF|=
(x-
p
2
)
2
+y2
,d=|x+
p
2
|∴
(x-
p
2
)
2
+y2
=|x+
p
2
|
将上式两边平方并化简,得y2=2px(p>0)①
方程①叫做抛物线的标准方程,它表示的抛物线的焦点在x轴的正半轴上,坐标是(
p
2
,0),它的准线方程是x=-
p
2

一条抛物线,由于它在坐标平面内的位置不同,方程也不同.所以抛物线的标准方程还有其它的几种形式:y2=-2px,x2=2py,x2=-2py.这四种抛物线的标准方程,焦点坐标以及准线方程列表如下:
标准方程  交点坐标  准线方程 
 y2=2px(p>0)  (
p
2
,0
 x=-
p
2
 y2=-2px(p>0)  (-
p
2
,0
 x=
p
2
 x2=2py(p>0)  (0,
p
2
 y=-
p
2
 x2=-2py(p>0)  (0,-
p
2
 y=-
p
2
解答下列问题:
(1)①已知抛物线的标准方程是y2=8x,则它的焦点坐标是
 
,准线方程是
 

②已知抛物线的焦点坐标是F(0,-6),则它的标准方程是
 

(2)点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
(3)直线y=
3
x+b
经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先阅读短文,再回答短文后面的问题.
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
下面根据抛物线的定义,我们来求抛物线的方程.
如上图,建立直角坐标系xoy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.设|KF|=p(p>0),那么焦点F的坐标为(数学公式,0),准线l的方程为x=-数学公式
设点M(x,y)是抛物线上任意一点,点M到l的距离为d,由抛物线的定义,抛物线就是满足|MF|=d的点M的轨迹.
∵|MF|=数学公式,d=|x+数学公式|∴数学公式=|x+数学公式|
将上式两边平方并化简,得y2=2px(p>0)①
方程①叫做抛物线的标准方程,它表示的抛物线的焦点在x轴的正半轴上,坐标是(数学公式,0),它的准线方程是x=-数学公式
一条抛物线,由于它在坐标平面内的位置不同,方程也不同.所以抛物线的标准方程还有其它的几种形式:y2=-2px,x2=2py,x2=-2py.这四种抛物线的标准方程,焦点坐标以及准线方程列表如下:
标准方程 交点坐标 准线方程
y2=2px(p>0)数学公式 x=-数学公式
y2=-2px(p>0) (-数学公式 x=数学公式
x2=2py(p>0) (0,数学公式 y=-数学公式
x2=-2py(p>0) (0,-数学公式 y=-数学公式
解答下列问题:
(1)①已知抛物线的标准方程是y2=8x,则它的焦点坐标是______,准线方程是______
②已知抛物线的焦点坐标是F(0,-6),则它的标准方程是______.
(2)点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
(3)直线数学公式经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

对四边形的观察与探索

  四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

  问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形--平行四边形中,研究这个问题:

已知:在ABCD中,O是对角线BD上任意一点(如图),求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点(如图)

求证:________________

(3)在三角形中(如图),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>


同步练习册答案