精英家教网 > 初中数学 > 题目详情
如图:∠1=30°,由点A测点B的方向是(  )
A.南偏东30°B.北偏西30°C.南偏东60°D.北偏西60°
魔方格
相关习题

科目:初中数学 来源: 题型:

如图:∠1=30°,由点A测点B的方向是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:∠1=30°,由点A测点B的方向是(  )
A.南偏东30°B.北偏西30°C.南偏东60°D.北偏西60°
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,用两个边长均为1的正方形ABCD和DCEF拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,固定矩形ABEF,将直角三角尺绕点D按逆时针方向旋转.
(1)观察并证明:当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时(如图甲),通过观察或测量BG与EH的长度,你能得到什么结论,并证明你的结论;
(2)操作:在旋转过程中,设直角三角尺的两直角边分别与射线BE、射线EF交于G、H(如图乙是旋转过程中的一种状态),DG交EH于O,设BG=x(x>0).
探究①:设直角三角尺与矩形ABEF重叠部分的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
探究②:在旋转过程中,∠DGE能否为30°?若能,设此时过点D有一直线分别与EF、EG交于M、N,该直线恰好平分△OEG的面积,求EM的长,若不能,请说明理由(注:
2
3
3
≈1.05
).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,七年级(6)班的小毛站在河边的A点处,观察河对面(正北方向)点B处的一棵小树,他很想知道自己距离这棵树有多远.可是身边没有测量的工具,于是他运用本学期学到的数学知识,设计了如下方案:
先向正东方向走了30步到达电线杆C,接着再向东走了30步到达D处,然后向正南方向继续行走,当看到电线杆C、小树B与自己现在所处的位置E在同一条直线上时,小毛向正南方向恰好走了40步.
(1)根据题意,画出测量的路线图;
(2)如果小毛的一步大约0.5m,试计算出A、B两点的距离约多少?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,河堤的横断面ABED是梯形,BE∥AD,迎水坡AB的坡度i=1:0.75(指坡面的铅直高度与水平宽度的比),坡长AB=10米.小明站在岸边的B点,看见河里有一只小船由C处沿CA方向划过来,CAD在一直线上,此时,他测得小船C的俯角是∠FGC=30°,若小明的眼睛与地面的距离BG=1.5米,求小船C到岸边的距离CA的长?(参考数据:数学公式,结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,七年级(6)班的小毛站在河边的A点处,观察河对面(正北方向)点B处的一棵小树,他很想知道自己距离这棵树有多远.可是身边没有测量的工具,于是他运用本学期学到的数学知识,设计了如下方案:
先向正东方向走了30步到达电线杆C,接着再向东走了30步到达D处,然后向正南方向继续行走,当看到电线杆C、小树B与自己现在所处的位置E在同一条直线上时,小毛向正南方向恰好走了40步.
(1)根据题意,画出测量的路线图;
(2)如果小毛的一步大约0.5m,试计算出A、B两点的距离约多少?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,用两个边长均为1的正方形ABCD和DCEF拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,固定矩形ABEF,将直角三角尺绕点D按逆时针方向旋转.
(1)观察并证明:当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时(如图甲),通过观察或测量BG与EH的长度,你能得到什么结论,并证明你的结论;
(2)操作:在旋转过程中,设直角三角尺的两直角边分别与射线BE、射线EF交于G、H(如图乙是旋转过程中的一种状态),DG交EH于O,设BG=x(x>0).
探究①:设直角三角尺与矩形ABEF重叠部分的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
探究②:在旋转过程中,∠DGE能否为30°?若能,设此时过点D有一直线分别与EF、EG交于M、N,该直线恰好平分△OEG的面积,求EM的长,若不能,请说明理由(注:数学公式).

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图,七年级(6)班的小毛站在河边的A点处,观察河对面(正北方向)点B处的一棵小树,他很想知道自己距离这棵树有多远.可是身边没有测量的工具,于是他运用本学期学到的数学知识,设计了如下方案:先向正东方向走了30步到达电线杆C,接着再向东走了30步到达D处,然后向正南方向继续行走,当看到电线杆C、小树B与自己现在所处的位置E在同一条直线上时,小毛向正南方向恰好走了40步.
(1)根据题意,画出测量的路线图;
(2)如果小毛的一步大约0.5m,试计算出A、B两点的距离约多少?并说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏期末题 题型:解答题

如图,七年级(6)班的小毛站在河边的A点处,观察河对面(正北方向)点B处的一棵小树,他很想知道自己距离这棵树有多远.可是身边没有测量的工具,于是他运用本学期学到的数学知识,设计了如下方案: 先向正东方向走了30步到达电线杆C,接着再向东走了30步到达D处,然后向正南方向继续行走,当看到电线杆C、小树B与自己现在所处的位置E在同一条直线上时,小毛向正南方向恰好走了40步.
(1)根据题意,画出测量的路线图;
(2)如果小毛的一步大约0.5m,试计算出A、B两点的距离约多少?并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市滨海县中考数学二模试卷(解析版) 题型:解答题

如图,河堤的横断面ABED是梯形,BE∥AD,迎水坡AB的坡度i=1:0.75(指坡面的铅直高度与水平宽度的比),坡长AB=10米.小明站在岸边的B点,看见河里有一只小船由C处沿CA方向划过来,CAD在一直线上,此时,他测得小船C的俯角是∠FGC=30°,若小明的眼睛与地面的距离BG=1.5米,求小船C到岸边的距离CA的长?(参考数据:,结果保留一位小数)

查看答案和解析>>


同步练习册答案