精英家教网 > 高中数学 > 题目详情
函数y=-x2的单调增区间为(  )
A.(0,-∞)B.[0,+∞)C.(-∞,0]D.(-∞,+∞)
相关习题

科目:高中数学 来源:2012-2013学年内蒙古鄂尔多斯市达拉特旗十一中高一(上)期末数学试卷(解析版) 题型:选择题

函数y=-x2的单调增区间为( )
A.(0,-∞)
B.[0,+∞)
C.(-∞,0]
D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2的单调增区间为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=-x2的单调增区间为(  )
A.(0,-∞)B.[0,+∞)C.(-∞,0]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=-x2的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(0,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=(
1
2
)x2+2x
的单调增区间为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:g′(
x1+x2
2
)
>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:数学公式>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=数学公式λx3-数学公式λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=数学公式是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:辽宁 题型:单选题

函数y=log
1
2
(x2-5x+6)
的单调增区间为(  )
A.(
5
2
,+∞)
B.(3,+∞)C.(-∞,
5
2
)
D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源:2012年上海市浦东新区高考预测数学试卷(文科)(解析版) 题型:解答题

已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>


同步练习册答案