精英家教网 > 高中数学 > 题目详情
函数y=(
1
2
)x2+2x
的单调增区间为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,+∞)D.(-∞,0]
外层函数是y=(
1
2
)
t
,内层函数是y=x2+2x
由题意可得外层函数是减函数
∵根据复合函数同增异减的性质
∴只要找到y=x2+2x的减区间即可
∵y=x2+2x的对称轴是x=-1
∴它的减区间为(-∞,-1)
∴函数y=(
1
2
)
x2+2x
的增区间为(-∞,-1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数在区间上恒为正值,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

武汉某文具生产企业,上年度某商品生产的投入成本为3元/件,出厂价为4元/件,年销售量为1000万件,本年度此企业为适应市场需求,计划提高产品档次,适度增加投入成本.若每件投入成本增加的比例为x(0<x<0.5),则出厂价相应提高的比例为0.625x,同时预计销售量增加的比例为0.75x;若每件投入成本增加的比例为x(0.5≤x≤1),则出厂价相应提高的比例为0.75x,但预计销量增加的比例为0.04x.
(1)写出本年度该企业预计的年利润y(万元)与投入成本增加的比例x的关系式;
(2)为使本年度的年利润达到最大值,则每件投入成本增加的比例x应是多少?此时最大利润是多少?(结果精确到0.001)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,有长20m的铁丝网,若一边靠墙围成3个大小相同,紧紧相接的长方形,问每个小长方形的长和宽各是多少时,三个长方形的总面积最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某书店发行一套数学辅导书,定价每套15元,为促销该书店规定:购买不超过50套,按定价付款;购买50至100套,按定价的9折付款;购买100套以上的,按定价的8折付款,现有钱1600元,问买书的套数最多为(  )
A.94B.100C.112D.133

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD,中间部分MNK是一片池塘,池塘的边缘曲线段MN为函数y=
2
9x
(
1
3
≤x≤
2
3
)
的图象,另外的边缘是平行于正方形两边的直线段.为了美化该地块,计划修一条穿越该地块的直路(宽度不计),直路l与曲线段MN相切(切点记为P),并把该地块分为两部分.记点P到边AD距离为t,f(t)表示该地块在直路左下部分的面积.
(1)求f(t)的解析式;
(2)求面积S=f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列不等式正确的是(  )
A.1.72.5>1.73B.0.8-0.1>0.8-0.2
C.1.70.3>0.93.1D.23>32

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a•b<0,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ln(1-)的定义域是(1,+∞),则实数a的值为________.

查看答案和解析>>

同步练习册答案