精英家教网 > 高中数学 > 题目详情
设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于(  )
A.0B.6C.0或6D.0或-6
相关习题

科目:高中数学 来源: 题型:

设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于(  )
A.0B.6C.0或6D.0或-6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,数轴上点A对应的数值为-4,点B对应的数值为4,点M对应的数值为x(-4<x<4),现将线段AB弯折成一个边长为2的正方形,使A、B两点重合于点P(P为该边的中点),设线段PM的长度为L,则建立了一个L关于x的映射关系L=L(x),有下列论断:

(1)L(2)=
2

(2)L(x)为偶函数 
(3)L(x)有3个极值点
(4)L(x)在(-4,4)上为单调函数.
其中正确的个数为(  )个.

查看答案和解析>>

科目:高中数学 来源:2013年江西省新余一中高考数学一模试卷(理科)(解析版) 题型:选择题

如图,数轴上点A对应的数值为-4,点B对应的数值为4,点M对应的数值为x(-4<x<4),现将线段AB弯折成一个边长为2的正方形,使A、B两点重合于点P(P为该边的中点),设线段PM的长度为L,则建立了一个L关于x的映射关系L=L(x),有下列论断:

(1)
(2)L(x)为偶函数 
(3)L(x)有3个极值点
(4)L(x)在(-4,4)上为单调函数.
其中正确的个数为( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,数轴上点A对应的数值为-4,点B对应的数值为4,点M对应的数值为x(-4<x<4),现将线段AB弯折成一个边长为2的正方形,使A、B两点重合于点P(P为该边的中点),设线段PM的长度为L,则建立了一个L关于x的映射关系L=L(x),有下列论断:

(1)数学公式
(2)L(x)为偶函数
(3)L(x)有3个极值点
(4)L(x)在(-4,4)上为单调函数.
其中正确的个数为_____个.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题:
①直线y=2x在x,y轴上的截距相等;
②直线ax+2y=1与直线x+y=0平行的充要条件是a=2;
③世界上第一个把π计算到3.1415926<π<3.1415927的是中国人祖冲之;
④抛两枚均匀的骰子,恰好出现一奇一偶的概率为
1
4

⑤满足||PF1|-|PF2||=2a(a>0)的动点P的轨迹是双曲线;
⑥设P(x、y)是曲线
x2
25
+
y2
9
=1
上的点,F1(-4,0),F2(4,0),则必有|PF1|+|PF2|<10.
其中错误的命题序号是______.

查看答案和解析>>

科目:高中数学 来源:福建 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知三点O(0,0),A(-1,1),B(1,1),曲线C上任意-点M(x,y)满足:|
MA
+
MB
|=4-
1
2
OM
•(
OA
+
OB
)

(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为kPM,kPN.试探究kPM•kPN的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,|
MP
|
取得最小值,求实数m的取值范围.

查看答案和解析>>


同步练习册答案