精英家教网 > 高中数学 > 题目详情
若函数f(x)=cx+c-x与g(x)=cx-c-x的定义域均为R,则(  )
A.f(x)与g(x)均为偶函数
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数
D.f(x)为偶函数,g(x)为奇函数
相关习题

科目:高中数学 来源:广东 题型:单选题

若函数f(x)=cx+c-x与g(x)=cx-c-x的定义域均为R,则(  )
A.f(x)与g(x)均为偶函数
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数
D.f(x)为偶函数,g(x)为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+a+1|+|x+a-1|的图象关于y轴对称,函数g(x)=-x3+bx2+cx(b为实数,c为正整数)有两个不同的极值点A、B,且A、B与坐标原点O共线:
(1)求f(x)的表达式;
(2)试求b的值;
(3)若x≥0时,函数g(x)的图象恒在函数f(x)图象的下方,求正整数c的值.

查看答案和解析>>

科目:高中数学 来源:0103 模拟题 题型:解答题

设函数f(x)=|x+a+1|+|x+a-1|的图象关于y轴对称,函数g(x)=-x3+bx2+cx(b为实数,c为正整数)有两个不同的极值点A、B,且A、B与坐标原点O共线。
(1)求f(x)的表达式;
(2)试求b的值;
(3)若x≥0时,函数g(x)的图象恒在函数f(x)图象的下方,求正整数c的值。

查看答案和解析>>

科目:高中数学 来源:2011年河北省衡水中学高考数学三模试卷B(文科)(解析版) 题型:解答题

设函数f(x)=|x+a+1|+|x+a-1|的图象关于y轴对称,函数g(x)=-x3+bx2+cx(b为实数,c为正整数)有两个不同的极值点A、B,且A、B与坐标原点O共线:
(1)求f(x)的表达式;
(2)试求b的值;
(3)若x≥0时,函数g(x)的图象恒在函数f(x)图象的下方,求正整数c的值.

查看答案和解析>>

科目:高中数学 来源:2011年河北省衡水中学高考数学三模试卷A(文科)(解析版) 题型:解答题

设函数f(x)=|x+a+1|+|x+a-1|的图象关于y轴对称,函数g(x)=-x3+bx2+cx(b为实数,c为正整数)有两个不同的极值点A、B,且A、B与坐标原点O共线:
(1)求f(x)的表达式;
(2)试求b的值;
(3)若x≥0时,函数g(x)的图象恒在函数f(x)图象的下方,求正整数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=αx3+bx2+cx+d(a、b、c、d∈R)为奇函数,且在f′(x)min=-1(x∈R),
lim
x→0
f(3+x)-f(3)
x
=8

(1)求函数f(x)的表达式;
(2)若函数f(x)的图象与函数m(x)=nx2-2x的图象有三个不同的交点,且都在y轴的右方,求实数n的取值范围;
(3)若g(x)与f(x)的表达式相同,是否存在区间[a,b],使得函数g(x)的定义域和值域都是[a,b],若存在,求出满足条件的一个区间[a,b];若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知函数f(x)=αx3+bx2+cx+d(a、b、c、d∈R)为奇函数,且在f′(x)min=-1(x∈R),数学公式
(1)求函数f(x)的表达式;
(2)若函数f(x)的图象与函数m(x)=nx2-2x的图象有三个不同的交点,且都在y轴的右方,求实数n的取值范围;
(3)若g(x)与f(x)的表达式相同,是否存在区间[a,b],使得函数g(x)的定义域和值域都是[a,b],若存在,求出满足条件的一个区间[a,b];若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都11中高考数学冲刺试卷(文理合卷)(解析版) 题型:解答题

(理)已知函数f(x)=αx3+bx2+cx+d(a、b、c、d∈R)为奇函数,且在f′(x)min=-1(x∈R),
(1)求函数f(x)的表达式;
(2)若函数f(x)的图象与函数m(x)=nx2-2x的图象有三个不同的交点,且都在y轴的右方,求实数n的取值范围;
(3)若g(x)与f(x)的表达式相同,是否存在区间[a,b],使得函数g(x)的定义域和值域都是[a,b],若存在,求出满足条件的一个区间[a,b];若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-数学公式x3+bx2+cx+bc,
(1)若函数f(x)在x=1处有极值-数学公式,试确定b、c的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|f′( x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我们称f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(cx+1)与g(x)=log2x在闭区间[1,2]上是接近的,则c的取值范围是(  )

查看答案和解析>>


同步练习册答案