精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+x2
1-x2
,则有(  )
A.f(x)是奇函数,且f(
1
x
)=f(x)
B.f(x)是奇函数,且f(
1
x
)=-f(x)
C.f(x)是偶函数,且f(
1
x
)=f(x)
D.f(x)是偶函数,f(
1
x
)=-f(x)
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x2
1-x2
,则有(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1+x2
1-x2
,则有(  )
A.f(x)是奇函数,且f(
1
x
)=f(x)
B.f(x)是奇函数,且f(
1
x
)=-f(x)
C.f(x)是偶函数,且f(
1
x
)=f(x)
D.f(x)是偶函数,f(
1
x
)=-f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的导数为0的点称为函数的驻点,若点(1,1)为函数f(x)的驻点,则称f(x)具有“1-1驻点性”.
(1)设函数f(x)=-x+2
x
+alnx,其中a≠0.
①求证:函数f(x)不具有“1-1驻点性”
②求函数f(x)的单调区间
(2)已知函数g(x)=bx3+3x2+cx+2具有“1-1驻点性”,给定x1,x2∈R,x1<x2,设λ为实数,且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(2)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列叙述:
①函数f(x)=sin(
x
2
+
4
)
的最小正周期为4π;
②已知函数f(x)=
1+x2
1-x2
(x≠±1),则f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

③函数y=cos2x+sinx的最小值是-1;
④定义:若任意x∈A,总有a-x∈A(A≠∅),就称集合A为a的“闭集”,已知集合A⊆{1,2,3,4,5,6}且A为6的“闭集”,则这样的集合A共有7个.
其中叙述正确的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列叙述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素;
②设a>0,将
a2
a•
3a2
表示成分数指数幂,其结果是a
5
6

③已知函数f(x)=
1+x2
1-x2
(x≠±1)
,则f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

④设集合A=[0,
1
2
B=[
1
2
,1]
,函数f(x)=
x+
1
2
 
(x∈A)
-2x+2 (x∈B)
,若x0∈A,且f[f(x0)]∈A,则x0的取值范围是(
1
4
1
2
)

其中所有正确叙述的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列叙述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素;
②设a>0,将
a2
a•
3a2
表示成分数指数幂,其结果是a
5
6

③已知函数f(x)=
1+x2
1-x2
(x≠±1)
,则f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

④设集合A=[0,
1
2
B=[
1
2
,1]
,函数f(x)=
x+
1
2
 
(x∈A)
-2x+2 (x∈B)
,若x0∈A,且f[f(x0)]∈A,则x0的取值范围是(
1
4
1
2
)

其中所有正确叙述的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
已知函数f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)当a=1时,求函数f(x)值域并说明函数f(x)在(-∞,0)上是否为有界函数?
(Ⅱ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(Ⅲ)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>


同步练习册答案