精英家教网 > 高中数学 > 题目详情
在数列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0   
②等差数列一定是等差比数列
③等比数列一定是等差比数列  
④等差比数列中可以有无数项为0
其中正确的判断是(  )
A.①②B.②③C.③④D.①④
相关习题

科目:高中数学 来源: 题型:

若在数列{an}中,对任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0
②等差数列一定是等差比数列
③等比数列一定是等差比数列
④若an=-3n+2,则数列{an}是等差比数列;
其中正确的判断是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若在数列{an}中,对任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0
②等差数列一定是等差比数列
③等比数列一定是等差比数列
④若an=-3n+2,则数列{an}是等差比数列;
其中正确的判断是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意n∈N*都有
an+2-an+1an+1-an
=k
(k为常数),则称{an}为等差比数列,k称为公差比,现给出下列命题:
(1)等差比数列的公差比一定不为0;
(2)等差数列一定是等差比数列;
(3)若an=-3n+2,则数列{an}是等差比数列;
(4)若等比数列是等差比数列,则其公比等于公差比.
其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;
(2)找出所有数列{an}和{bn},使对一切n∈N*
an+1an
=bn
,并说明理由;
(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{an}中存在某个连续p项的和是数列{bn}中的一项,请证明.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;
(2)找出所有数列{an}和{bn},使对一切n∈N*
an+1
an
=bn
,并说明理由;
(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{an}中存在某个连续p项的和是数列{bn}中的一项,请证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上,
(1)若数列{an+c}成等比数列,求常数c的值;
(2)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(3)若bn=
1
3
an
+1,请求出一个满足条件的指数函数g(x),使得对于任意的正整数n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以证明.(其中为连加号,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0   
②等差数列一定是等差比数列
③等比数列一定是等差比数列  
④等差比数列中可以有无数项为0
其中正确的判断是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源:咸安区模拟 题型:单选题

在数列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0   
②等差数列一定是等差比数列
③等比数列一定是等差比数列  
④等差比数列中可以有无数项为0
其中正确的判断是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=4.f(x)=an-1x3-3(3an-an+1)x+1在x=
2
处取得极值.
(1)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式;
(2)记bn=2(1-
1
an
)
,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)是否存在指数函数g(x),使得对于任意正整数n,都有
n
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立,若存在,求出满足条件的一个指数函数g(x):若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在y轴的正半轴上依次有点A1、A2、…An…,其中点A1(0,1)、A2(0,10),且|An-1An|=3|AnAn+1|(n=2,3,4…),在射线y=x(x≥0)上依次有点B1、B2…、Bn…,点B1的坐标为(3,3),且|OBn|=|OBn-1|+2
2
(n=2,3,4…).
(1)求|AnAn+1|(用含字母的式子表示);
(2)求点An、Bn的坐标(用含n的式子表示);
(3)设四边形AnBnBn+1An+1面积为Sn,问{Sn}中是否存在不同的三项S1,Sn,Sk(1<n<k,n、k∈N)恰好成等差数列?若存在,求出所有这样的三项,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案