精英家教网 > 高中数学 > 题目详情
若函数f(x)=
sinx
(x+a)2
是奇函数,则a的值为(  )
A.0B.1C.2D.4
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
sinx(x+a)2
是奇函数,则a的值为
 

查看答案和解析>>

科目:高中数学 来源:温州二模 题型:单选题

若函数f(x)=
sinx
(x+a)2
是奇函数,则a的值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)若函数f(x)=
sinx
(x+a)2
是奇函数,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为R上的奇函数,且在定义域上单调递减,又f(sinx-1)>-f(sinx),x∈[0,π],则x的取值范围是(  )
A、(
π
3
3
)
B、[0,
π
3
]∪(
3
,π]
C、[0,
π
6
)∪(
6
,π]
D、(
π
6
6
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)为R上的奇函数,且在定义域上单调递减,又f(sinx-1)>-f(sinx),x∈[0,π],则x的取值范围是(  )
A.(
π
3
3
)
B.[0,
π
3
]∪(
3
,π]
C.[0,
π
6
)∪(
6
,π]
D.(
π
6
6
)

查看答案和解析>>

科目:高中数学 来源:2013年广东省梅州市高考数学二模试卷(文科)(解析版) 题型:选择题

设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切的实数x都成立,则称f(x)为“倍约束函数”.现给出下列函数:①f(x)=2x,②f(x)=x2+1,③f(x)=sinx+cosx,④<“m“:math dsi:zoomscale=150 dsi:_mathzoomed=1>f(x)=xx2-x+3,⑤f(x)是定义在实数集上的奇函数,且对一切的x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍约束函数”的有( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切的实数x都成立,则称f(x)为“倍约束函数”.现给出下列函数:①f(x)=2x,②f(x)=x2+1,③f(x)=sinx+cosx,④<“m“:math dsi:zoomscale=150 dsi:_mathzoomed=1>f(x)=xx2-x+3数学公式,⑤f(x)是定义在实数集上的奇函数,且对一切的x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍约束函数”的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对?x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程
lnxf(x)
=x2-2ex+m的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx(λ≤-1)是区间[-1,1]上的减函数,(1)求a的值.(2)若g(x)≤t2-λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为(  )
A、②④B、①③C、③④D、①②

查看答案和解析>>


同步练习册答案