精英家教网 > 高中数学 > 题目详情
“x2≠y2”是“x≠y或x≠-y”的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

给出以下四个命题,所有真命题的序号为
 

①从总体中抽取的样本(x1,y1),(x2,y2),L,(xn,yn),若记
.
x
=
1
n
i=1nxi
.
y
=
1
n
i=1nyi,则回归直线y=bx+a必过点(
.
x
.
y

②将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象;
③已知数列an,那么“对任意的n∈N*,点Pn(n,aa)都在直线y=2x+1上”是{an}为等差数列的“充分不必要条件”
④命题“若x≥2,则x≥2或x≤-2”的否命题是“若{x}≥2,则-2<x<2”

查看答案和解析>>

科目:高中数学 来源:临沂模拟 题型:填空题

给出以下四个命题,所有真命题的序号为______.
①从总体中抽取的样本(x1,y1),(x2,y2),L,(xn,yn),若记
.
x
=
1
n
i=1nxi
.
y
=
1
n
i=1nyi,则回归直线y=bx+a必过点(
.
x
.
y

②将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象;
③已知数列an,那么“对任意的n∈N*,点Pn(n,aa)都在直线y=2x+1上”是{an}为等差数列的“充分不必要条件”
④命题“若x≥2,则x≥2或x≤-2”的否命题是“若{x}≥2,则-2<x<2”

查看答案和解析>>

科目:高中数学 来源:2011年黑龙江省大庆实验中学高考数学考前得分训练试卷(六)(解析版) 题型:填空题

给出以下四个命题,所有真命题的序号为   
①从总体中抽取的样本(x1,y1),(x2,y2),L,(xn,yn),若记=i=1nxi=i=1nyi,则回归直线y=bx+a必过点(
②将函数y=cos2x的图象向右平移个单位,得到函数的图象;
③已知数列an,那么“对任意的n∈N*,点Pn(n,aa)都在直线y=2x+1上”是{an}为等差数列的“充分不必要条件”
④命题“若x≥2,则x≥2或x≤-2”的否命题是“若{x}≥2,则-2<x<2”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出以下四个命题,所有真命题的序号为________.
①从总体中抽取的样本(x1,y1),(x2,y2),L,(xn,yn),若记数学公式=数学公式i=1nxi数学公式=数学公式i=1nyi,则回归直线y=bx+a必过点(数学公式
②将函数y=cos2x的图象向右平移数学公式个单位,得到函数数学公式的图象;
③已知数列an,那么“对任意的n∈N*,点Pn(n,aa)都在直线y=2x+1上”是{an}为等差数列的“充分不必要条件”
④命题“若x≥2,则x≥2或x≤-2”的否命题是“若{x}≥2,则-2<x<2”

查看答案和解析>>

科目:高中数学 来源: 题型:

“x2≠y2”是“x≠y或x≠-y”的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“x2≠y2”是“x≠y或x≠-y”的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①f(a)f(b)<0为函数f(x)在区间(a,b)内存在零点的必要不充分条件;
②命题“?x∈R,ex-2sinx+4≤0”的否定是“?x∉R,ex-2sinx+4>0”
③从总体中抽取的样本(x1,y1),(x2,y2),…,(xn,yn).若记
.
X
=
1
n
n
i=1
xi
.
Y
=
1
n
n
i=1
yi
,则回归直线
?
y
=bx+a
必过点(
.
X
.
Y
)

④若关于x的不等式|x-1|+|x|>m的解集为{x|x<-1,或x>2},则m=3.
其中真命题的序号为
 
(写出所有正确的命题)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,
命题p:实系数一元二次方程x2+ax+2=0无实根;
命题q:存在点(x,y)同时满足x2+y2=4且(x+a)2+y2=1.
试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a∈R,
命题p:实系数一元二次方程x2+ax+2=0无实根;
命题q:存在点(x,y)同时满足x2+y2=4且(x+a)2+y2=1.
试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012年学广东省梅州市东山中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知a∈R,
命题p:实系数一元二次方程x2+ax+2=0无实根;
命题q:存在点(x,y)同时满足x2+y2=4且(x+a)2+y2=1.
试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.

查看答案和解析>>


同步练习册答案