精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(x+
π
6
)?sin(
π
3
-x),如果f(x1)=f(x2)=0,其中x1≠x2,那么|x1-x2|的最小值为(  )
A.2πB.πC.
π
2
D.
π
4
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
6
)sin(ωx+
π
3
)(ω>0)的最小正周期为π
(1)若x∈[
π
8
12
],求函数f(x)的最小值;
(2)在△ABC中,若A<B,且f(A)=f(B)=
1
2
,求
BC
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
6
)•sin(
π
3
-x),如果f(x1)=f(x2)=0,其中x1≠x2,那么|x1-x2|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=2sin(x+
π
6
)•sin(
π
3
-x),如果f(x1)=f(x2)=0,其中x1≠x2,那么|x1-x2|的最小值为(  )
A.2πB.πC.
π
2
D.
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(
1
3
x-
π
6
),x∈R.
(1)求f(0)的值;
(2)设α,β∈[0,
π
2
]
,f(3α+
π
2
)=
10
13
,f(3β+
π
2
)=
6
5
.求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源:广东 题型:解答题

已知函数f(x)=2sin(
1
3
x-
π
6
),x∈R.
(1)求f(0)的值;
(2)设α,β∈[0,
π
2
]
,f(3α+
π
2
)=
10
13
,f(3β+
π
2
)=
6
5
.求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinωx+cos(ωx+
π
6
)-sin(ωx-
π
3
)-1(其中ω>0,x∈R)的最小正周期为4π.
(Ⅰ)求f(x)的最大值和最小值及相应的x的值;
(Ⅱ)在△ABC中,若角A、B、C所对边分别为a、b、c,且f(B)=1,b=3
3
,a+c=3
6
,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2sinωx+cos(ωx+
π
6
)-sin(ωx-
π
3
)-1(其中ω>0,x∈R)的最小正周期为4π.
(Ⅰ)求f(x)的最大值和最小值及相应的x的值;
(Ⅱ)在△ABC中,若角A、B、C所对边分别为a、b、c,且f(B)=1,b=3
3
,a+c=3
6
,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx)
(ω>0),若f(x)图象中相邻对称轴间的距离为
π
2

(1)求函数y=f(x)的单调递增区间;
(2)若函数g(x)=f(x)-a在区间[-
π
6
π
4
]上恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4

(1)求f(
π
6
)的值;
(2)求函数f(x)的最小正周期和图象的对称轴方程;
(3)求函数f(x)在区间[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+cosx+cos2x+cos3x
1-cosx-2cos2x

(1)当sinθ-2cosθ=2时,求f(θ)的值;
(2)当k=
f(x)-1
f(x)+2
时,求k的取值范围.
(3)设函数y=
f(
π
2
-x)
f(x)+4
,x∈(0,
π
6
) ∪(
π
6
,π)
,求函数y的最小值.
注:sinθ+sinφ=2sin
θ+φ
2
cos
θ-φ
2
,cosθ+cosφ=2cos
θ+φ
2
cos
θ-φ
2

查看答案和解析>>


同步练习册答案