精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
x
-lnx在区间(1,2)内有一个零点x0,若用二分法求x0的近似值(精确度0.1),则需要将区间等分的次数为(  )
A.3B.4C.5D.6
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1
x
-lnx在区间(1,2)内有一个零点x0,若用二分法求x0的近似值(精确度0.1),则需要将区间等分的次数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
1
x
-lnx在区间(1,2)内有一个零点x0,若用二分法求x0的近似值(精确度0.1),则需要将区间等分的次数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx,a∈R.
(1)讨论y=f(x)的单调性;(2)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凹函数”.
试证明:当a=-1时,g(x)=|f(x)|+
1
x
为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m+
1
m
)lnx+
1
x
-x

(Ⅰ)当m=2时,求f(x)的极大值;
(Ⅱ)当m>0时,讨论f(x)在区间(0,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-m(x-
1
x
)(m为实常数)
(1)当m=
2
5
时,求函数f(x)在区间[1,e]上的最大值;
(2)若函数f(x)无极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知函数f(x)=
lnx+a
x
(a∈R),g(x)=
1
x

(1)求函数g(x)在x=1处的切线方程;
(2)求f(x)的单调区间与极值;
(3)若函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20、已知函数f(x)=
lnx+a
x
(a∈R),g(x)=
1
x

(1)求函数g(x)在x=1处的切线方程;
(2)求f(x)的单调区间与极值;
(3)若函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-m(x-
1
x
)(m为实常数)
(1)当m=
2
5
时,求函数f(x)在区间[1,e]上的最大值;
(2)若函数f(x)无极值点,求m的取值范围.

查看答案和解析>>


同步练习册答案