精英家教网 > 高中数学 > 题目详情
已知三个不等式:①x2-4x+3<0;②x2-6x+8>0;③2x2-8x+m≤0.要使同时满足①式和②式的所有x的值都满足③式,则实数m的取值范围是(  )
A.m>9B.m=9C.m≤6D.0<m≤9
相关习题

科目:高中数学 来源: 题型:

已知三个不等式:①x2-4x+3<0; ②x2-6x+8>0; ③2x2-8x+m≤0.要使同时满足①式和②式的所有x的值都满足③式,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个不等式:①x2-4x+3<0;②x2-6x+8>0;③2x2-8x+m≤0.要使同时满足①式和②式的所有x的值都满足③式,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个不等式:①x2-4x+3<0;②x2-6x+8>0;③2x2-8x+m≤0.要使同时满足①式和②式的所有x的值都满足③式,则实数m的取值范围是(  )
A.m>9B.m=9C.m≤6D.0<m≤9

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省威海市荣成市高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知三个不等式:①x2-4x+3<0;②x2-6x+8>0;③2x2-8x+m≤0.要使同时满足①式和②式的所有x的值都满足③式,则实数m的取值范围是( )
A.m>9
B.m=9
C.m≤6
D.0<m≤9

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
(1)函数f(x)=x2ex既无最小值也无最大值;
(2)在区间[-3,3]上随机取一个数x,使得|x-1|+|x+2|≤5成立的概率为
5
6

(3)若不等式(m+n)(
a
m
+
1
n
)≥25对任意正实数m,n恒成立,则正实数a的最小值为16;
(4)已知函数f(x)=
5
x+1
-3,(x≥0)
x2+4x+2,(x<0)
,若方程f(x)=k(x+2)-2恰有三个不同的实根,则实数k的取值范围是k∈(0,2);
以上正确的序号是:
 

查看答案和解析>>


同步练习册答案