精英家教网 > 高中数学 > 题目详情
设f(x)=x2-4x+m,g(x)=x+
4
x
在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是(  )
A.5B.
31
3
C.
13
3
D.4
相关习题

科目:高中数学 来源: 题型:

设f(x)=x2-4x+m,g(x)=x+
4
x
在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=x2-4x+m,g(x)=x+
4
x
在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是(  )
A.5B.
31
3
C.
13
3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+x2-x,a∈R

(1)若函数 在x=1处的切线l与直线y=4x+3平行,求实数a的值;
(2)若函数f(x)在(2,+∞)上存在单调递增区间,求实数a的取值范围;
(3)在(1)的条件下,设函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x,x∈R.
(Ⅰ)解方程:f(2x)-f(x+1)=8;
(Ⅱ)设a∈R,求函数g(x)=f(x)+a•4x在区间[0,1]上的最大值M(a)的表达式;
(Ⅲ)若f(x1)+f(x2)=f(x1)f(x2),f(x1)+f(x2)+f(x3)=f(x1)f(x2)f(x3),求x3的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x,x∈R.
(Ⅰ)解方程:f(2x)-f(x+1)=8;
(Ⅱ)设a∈R,求函数g(x)=f(x)+a•4x在区间[0,1]上的最大值M(a)的表达式;
(Ⅲ)若f(x1)+f(x2)=f(x1)f(x2),f(x1)+f(x2)+f(x3)=f(x1)f(x2)f(x3),求x3的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省遂宁市射洪中学高一(上)第一次月考数学试卷(解析版) 题型:选择题

设f(x)=x2-4x+m,在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x∈D,使得f(x)≤f(a),g(x)≤g(a)且g(x)=f(x);那么在D=[1,3]上f(x)的最大值是( )
A.5
B.
C.
D.4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省黔西南州晴隆二中高三(上)9月月考数学试卷(文科)(解析版) 题型:选择题

设f(x)=x2-4x+m,在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x∈D,使得f(x)≤f(a),g(x)≤g(a)且g(x)=f(x);那么在D=[1,3]上f(x)的最大值是( )
A.5
B.
C.
D.4

查看答案和解析>>

科目:高中数学 来源:《函数概念与基本处等函数I》2013年高三数学一轮复习单元训练(北京邮电大学附中)(解析版) 题型:选择题

设f(x)=x2-4x+m,在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x∈D,使得f(x)≤f(a),g(x)≤g(a)且g(x)=f(x);那么在D=[1,3]上f(x)的最大值是( )
A.5
B.
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)=x2-4x+m,数学公式在区间D=[1,3]上,满足:对于任意的a∈D,存在实数x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是


  1. A.
    5
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.
(1)试求函数f(x)=x2与g(x)=x(x+2)(x-4)在闭区间[-2,2]上的“绝对和”.
(2)设hm(x)=-4x+m及f(x)=x2都是定义在闭区间[1,3]上,记hm(x)与f(x)的“绝对和”为Dm,如果D(m)的最小值是D(m0),则称f(x)可用hm0(x)“替代”,试求m0的值,使f(x)可用hm0(x)“替代”.

查看答案和解析>>


同步练习册答案