精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax3+3x2-x+1在R上为减函数,则实数a的取值范围是(  )
A.(-∞,-3)B.(-∞,-3)C.(-3,+∞)D.[-3,+∞)
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=ax3+3x2-x+1在R上为减函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=ax3+3x2-x+1在R上为减函数,则实数a的取值范围是(  )
A.(-∞,-3)B.(-∞,-3)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源:2008-2009学年吉林省辽源五中高二(下)期中数学试卷(文科)(解析版) 题型:选择题

若函数f(x)=ax3+3x2-x+1在R上为减函数,则实数a的取值范围是( )
A.(-∞,-3)
B.(-∞,-3)
C.(-3,+∞)
D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数f(x)=ax3+3x2-x+1在R上为减函数,则实数a的取值范围是


  1. A.
    (-∞,-3)
  2. B.
    (-∞,-3)
  3. C.
    (-3,+∞)
  4. D.
    [-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=ax3+3x2-x+1在R上是减函数;命题q:在平面直角坐标系中,点(-1,a)在直线x+y-3=0的左下方.若“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(3)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x,则称点(x,f(x) )为函数y=f(x)的“拐点”;定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)恒成立,则函数y=f(x)的图象关于点(x,f(x))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=ax3-3x2,其中a为大于零的常数.
(1)当a=
13
时,令h(x)=f′(x)+6x,求证:当x∈(0,+∞)时,h(x)≥2elnx(e为自然对数的底数.)
(2)若函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.

查看答案和解析>>


同步练习册答案