精英家教网 > 高中数学 > 题目详情
已知ab∈R,且a、G、b成等差数列,a、H、b成等比数列,则“a=b”是“G=H”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

已知ab∈R,且a、G、b成等差数列,a、H、b成等比数列,则“a=b”是“G=H”的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ab∈R,且a、G、b成等差数列,a、H、b成等比数列,则“a=b”是“G=H”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市安福中学高三(上)第三次段考数学试卷 (理科)(解析版) 题型:选择题

已知ab∈R,且a、G、b成等差数列,a、H、b成等比数列,则“a=b”是“G=H”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知ab∈R,且a、G、b成等差数列,a、H、b成等比数列,则“a=b”是“G=H”的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:松江区模拟 题型:解答题

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>


同步练习册答案