精英家教网 > 高中数学 > 题目详情
设(3-x)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,那么a0+a2+a4的值为(  )
A.123B.122C.246D.244
相关习题

科目:高中数学 来源: 题型:

设(3-x)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,那么a0+a2+a4的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设(3-x)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,那么a0+a2+a4的值为(  )
A.123B.122C.246D.244

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设(3-x)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,那么a0+a2+a4的值为


  1. A.
    123
  2. B.
    122
  3. C.
    246
  4. D.
    244

查看答案和解析>>

科目:高中数学 来源:安徽模拟 题型:填空题

设x6=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5+a6(x-1)6,则a3=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设x6=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5+a6(x-1)6,则a3=
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)当n=5时,求a0+a1+a2+a3+a4+a5的值.
(2)设bn=
a2
2n-3
,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当n≥2时,Tn=
n(n+1)(n-1)
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+
1x
,g(x)=x,已知A0(x,0),(x0>0),如图,过A0作平行于y轴的直线交y=g(x)的图象于A1,交y=f(x)的图象于P1,要过P1作平行于x轴的直线交y=g(x)于A2,再过A2作平行于y轴的直线交y=f(x)于P2,…,这样一直作下去;设△A1P1A2的面积为S1,…,△AkPkAk+1的面积为Sk,数列{Sn}的前n项和为Tn,并设Pn(xn,yn).
(1)求S1,S2
(2)求证:yn2=2Tn+2n+x02
(3)若x0=5,求证:45<y1000<45.1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)当n=5时,求a2的值.
(2)设Sn=1+
1
2
+
1
3
+…+
1
a0-1
,求证:
n
2
Sn≤n,n∈N*

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*), 
(1)当n=5时,求a0+a1+a2+a3+a4+a5的值;
(2)设,Tn=b2+b3+b4+…+bn,试用数学归纳法证明:当n≥2时,

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1-x)5=a0+a1x+a2x2+a3+a4x4+a5x5.求:
(1)a1+a2+a3+a4+a5(的值;
(2)a1+a3+a5的值;
(3)|a1|+|a2|+|a3|+|a4|+|a5|的值.

查看答案和解析>>


同步练习册答案