精英家教网 > 高中数学 > 题目详情
以抛物线的焦点弦为直径的圆与其准线的位置关系是(  )
A.相切B.相交
C.相离D.以上均有可能
相关习题

科目:高中数学 来源: 题型:

以抛物线的焦点弦为直径的圆与其准线的位置关系是(  )
A、相切B、相交C、相离D、以上均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以抛物线的焦点弦为直径的圆与其准线的位置关系是(  )
A.相切B.相交
C.相离D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以抛物线的焦点弦为直径的圆与其准线的位置关系是(  )
A.相切B.相交
C.相离D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省绍兴一中高二(上)期末数学试卷(文科)(解析版) 题型:选择题

以抛物线的焦点弦为直径的圆与其准线的位置关系是( )
A.相切
B.相交
C.相离
D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省绍兴一中高二(上)期末数学试卷(理科)(解析版) 题型:选择题

以抛物线的焦点弦为直径的圆与其准线的位置关系是( )
A.相切
B.相交
C.相离
D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

以抛物线的焦点弦为直径的圆与其准线的位置关系是


  1. A.
    相切
  2. B.
    相交
  3. C.
    相离
  4. D.
    以上均有可能

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二下学期期中考试理科数学试卷(解析版) 题型:填空题

已知抛物线的焦点为F,准线为l,过F的直线与该抛物线交于AB两点,设为弦AB的中点,则下列结论:①以AB为直径的圆必与准线l相切;    ②; 

;     ④;    ⑤.

其中一定正确的有                (写出所有正确结论的序号).

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知抛物线的焦点为F,准线为l,过F的直线与该抛物线交于AB两点,设为弦AB的中点,则下列结论:①以AB为直径的圆必与准线l相切;    ②; 
;     ④;    ⑤.
其中一定正确的有                (写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为F,准线为l,过F的直线与该抛物线交于AB两点,设为弦AB的中点,则下列结论:①以AB为直径的圆必与准线l相切;    ②; 
;     ④;    ⑤.
其中一定正确的有                (写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题.

查看答案和解析>>


同步练习册答案