精英家教网 > 高中数学 > 题目详情
以过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是(  )
A.相交B.相切C.相离D.不能确定
相关习题

科目:高中数学 来源: 题型:

以过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点且垂直于x轴的直线与椭圆交于M、N两点,以MN为直径的圆恰好过左焦点,则椭圆的离心率等于
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点且垂直于x轴的直线与椭圆交于M、N两点,以MN为直径的圆恰好过左焦点,则椭圆的离心率等于______.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点为F1,F2,过F1的直线l与椭圆相交于A,B两点.
(1)若∠AF1F2=60°,且点A在以F1F2为直径的圆上,求椭圆的离心率;
(2)若a=
2
,b=1,求
F2A
F2B
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为圆心的圆经过原点O,且与该椭圆的右准线交与A,B两点,已知△OAB是正三角形,则该椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.
(1)求直线l和椭圆的方程;
(2)求证:点F1(-2,0)在以线段AB为直径的圆上;
(3)在直线l上有两个不重合的动点C、D,以CD为直径且过点F1的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,已知|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)求椭圆的离心率e的取值范围;
(Ⅱ)设O为原点,椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A、B两点,若OA⊥OB,求直线l被圆F2截得的弦长S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)与直线x+y-1=0相交于两点P,Q,以PQ为直径的圆过原点O,则
1
a2
+
1
b2
=
2
2

查看答案和解析>>


同步练习册答案