精英家教网 > 高中数学 > 题目详情
y=-
1
x
在(
1
2
,-2)处的切线方程是(  )
A.y=4xB.y=4x-4C.y=4x+4D.y=2x-4
相关习题

科目:高中数学 来源: 题型:

y=-
1
x
在(
1
2
,-2)处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

y=-
1
x
在(
1
2
,-2)处的切线方程是(  )
A.y=4xB.y=4x-4C.y=4x+4D.y=2x-4

查看答案和解析>>

科目:高中数学 来源: 题型:

①函数f(x)=-
1
x
+lgx
的零点所在的区间是(2,3);②曲线y=4x-x3在点(-1,-3)处的切线方程是y=x-2;③将函数y=2x+1的图象按向量a=(1,-1)平移后得到函数y=2x+1的图象;④函数y=
lo
g
(x2-1)
1
2
的定义域是(-
2
,-1)∪(1,
2
)⑤
a
b
>0是
a
b
的夹角为锐角的充要条件;以上命题正确的是
①②
①②
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=t(
1
x
-1)+lnx,t为常数,且t>0.
(1)若曲线y=f(x)上一点(
1
2
y0
)处的切线方程为2x+y-2+ln2,求t和y0的值;
(2)若f(x)在区间[1,+∞)上是单调递增函数,求t的取值范围.

查看答案和解析>>


同步练习册答案