精英家教网 > 初中数学 > 题目详情
一次函数y=kx+b图象上的点的坐标不同时为正,也不同时为零,则k、b的取值范围是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b<0D.k<0,b>0
相关习题

科目:初中数学 来源: 题型:

已知一次函数y=kx+b的图象与反比例函数y=
k
x
的图象相交于点P(2,1),与x轴交于点E,与y轴交于点F,O为坐标原点.
(1)求k,b的值;
(2)在同一坐标系中画出这两个函数的图象;
(3)△EOF的面积是△EOP的面积的多少倍?
(4)能不能在反比例函数y=
k
x
的图象上找到一点Q,使△QOE的面积△EOF的面积相等?如果能,请写出Q点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y1=kx+b(k≠0)的图象与反比例函数数学公式(m≠0)的图象交于A(-2,1)、B(1,n)两点.
(1)求反比例函数和一次函数的解析式,求出点B的坐标;
(2)在同一坐标系中画出两个函数的图象的示意图,并观察图象回答:当x为何值时,y1>y2?______
(3)已知点C(1,0),求出△ABC的面积.
(4)在BC上是否存在一点E,使得直线AE将△ABC的面积二等分?如果存在请你画出这条直线,求出点E的坐标;如果不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b的图象与反比例函数数学公式的图象相交于点P(2,1),与x轴交于点E,与y轴交于点F,O为坐标原点.
(1)求k,b的值;
(2)在同一坐标系中画出这两个函数的图象;
(3)△EOF的面积是△EOP的面积的多少倍?
(4)能不能在反比例函数数学公式的图象上找到一点Q,使△QOE的面积△EOF的面积相等?如果能,请写出Q点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

一次函数y=kx+b图象上的点的坐标不同时为正,也不同时为零,则k、b的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b图象上的点的坐标不同时为正,也不同时为零,则k、b的取值范围是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b<0D.k<0,b>0

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

一次函数y=kx+b图象上的点的坐标不同时为正,也不同时为零,则k、b的取值范围是


  1. A.
    k>0,b>0
  2. B.
    k>0,b<0
  3. C.
    k<0,b<0
  4. D.
    k<0,b>0

查看答案和解析>>

科目:初中数学 来源:山东省期末题 题型:单选题

一次函数y=kx+b图象上的点的坐标不同时为正,也不同时为零,则k、b的取值范围是
[     ]
A.k>0,b>0
B.k>0,b<0
C.k<0,b<0
D.k<0,b>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料:
  我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=数学公式

  例:求点P(1,2)到直线y=数学公式x-数学公式的距离d时,先将y=数学公式化为5x-12y-2=0,再由上述距离公式求得d=数学公式=数学公式
  解答下列问题:
  如图2,已知直线y=-数学公式与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
  (1)求点M到直线AB的距离.
  (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知反比例函数数学公式的图象与一次函数y2=kx+m的图象相交于A(2,1).
(1)分别求出这两个函数的解析式,并在同一坐标系内画出它们的大致图象;
(2)试判断P(-1,5)关于x轴的对称点Q是否在一次函数y2=kx+m的图象上,若在请求出S△APQ;若不在,请求出直线AQ的解析式;
(3)若一次函数的图象与反比例函数的图象的另一个交点为B,且B点的纵坐标为-4,请根据图象回答:①当x取何值时,y1>y2;②当x取何值时,y1•y2>0.

查看答案和解析>>


同步练习册答案