精英家教网 > 高中数学 > 题目详情
函数y=-cos(
x
2
-
π
3
)
的单调递增区间是(  )
A.[2kπ-
4
3
π,2kπ+
2
3
π](k∈Z)
B.[4kπ-
4
3
π,4kπ+
2
3
π](k∈Z)
C.[2kπ+
2
3
π,2kπ+
8
3
π](k∈Z)
D.[4kπ+
2
3
π,4kπ+
8
3
π](k∈Z)
相关习题

科目:高中数学 来源: 题型:

函数y=-cos(
x
2
-
π
3
)
的单调递增区间是(  )
A、[2kπ-
4
3
π,2kπ+
2
3
π](k∈Z)
B、[4kπ-
4
3
π,4kπ+
2
3
π](k∈Z)
C、[2kπ+
2
3
π,2kπ+
8
3
π](k∈Z)
D、[4kπ+
2
3
π,4kπ+
8
3
π](k∈Z)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=-cos(
x
2
-
π
3
)
的单调递增区间是(  )
A.[2kπ-
4
3
π,2kπ+
2
3
π](k∈Z)
B.[4kπ-
4
3
π,4kπ+
2
3
π](k∈Z)
C.[2kπ+
2
3
π,2kπ+
8
3
π](k∈Z)
D.[4kπ+
2
3
π,4kπ+
8
3
π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos(
x
2
-
π
3
)的单调递增区间是
[-
3
+4kπ,
3
+4kπ]
[-
3
+4kπ,
3
+4kπ]

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有
②③
②③
(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有______(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=log3(x2-2x)的单调减区间为(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,则p是q的必要不充分条件;
(3)命题“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函数f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则y=f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
],k∈z

(5)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
其中所有正确的个数是(  )

查看答案和解析>>


同步练习册答案