精英家教网 > 高中数学 > 题目详情
已知a>b>c>0,若P=
b-c
a
,Q=
a-c
b
,则(  )
A.P≥QB.P≤QC.P>QD.P<Q
相关习题

科目:高中数学 来源: 题型:

已知a>b>c>0,若P=
b-c
a
,Q=
a-c
b
,则(  )
A、P≥QB、P≤Q
C、P>QD、P<Q

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a>b>c>0,若P=
b-c
a
,Q=
a-c
b
,则(  )
A.P≥QB.P≤QC.P>QD.P<Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
过点P (1,
3
2
),离心率e=
1
2
,右顶点为A,右焦点为F.
(1)求椭圆E的标准方程;
(2)若经过F的直线l(不与x轴重合)交椭圆E与B,C两点,延长BA,CA,分别交右准线于M,N两点.求证:FN⊥FM.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>0),f′(x)为f(x)的导函数.设A={x|f(x)<0},B={x|f′(x)<0}.若A∩B=P{x|2<x<3},则
b+ca
=
2
2

查看答案和解析>>

科目:高中数学 来源:0119 期中题 题型:解答题

已知集合A={x|x<-1或x>2},函数的定义域为集合B,
(Ⅰ)求A∩B和A∪B;
(Ⅱ)若C={x|4x+p<0},CA,求实数p的取值范围。

查看答案和解析>>

科目:高中数学 来源:广东省深圳高级中学2011-2012学年高一上学期期中测试数学试题 题型:044

已知集合A={x|x<-1或x>2},函数的定义域为集合B.

(Ⅰ)求A∩B和A∪B;

(Ⅱ)若C={x|4x+p<0},CA,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其左、右焦点分别为F1(-c,0)、F2(c,0),且a、b、c成等比数列.
(1)求
c
a
的值.
(2)若椭圆C的上顶点、右顶点分别为A、B,求证:∠F1AB=90°.
(3)若P为椭圆C上的任意一点,是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距为2c,若
c
a
=
5
-1
2
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-3
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明下列命题:
已知函数f(x)=kx+p及实数m,n(m<n),若f(m)>0,f(n)>0,则对于一切实数x∈(m,n)都有f(x)>0.
(2)利用(1)的结论解决下列各问题:
①若对于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求实数k的取值范围.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求证:ab+bc+ca>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区三模)在平面直角坐标系中,已知向量
OF
=(c,0)(c为常数,且c>0),
OG
=(x,x)(x∈R),
|
FG
|的最小值为  1 ,  
OE
=(
a2
c
,  t)
(a为常数,且a>c,t∈R).动点P同时满足下列三个条件:(1)|
PF
|=
c
a
|
PE
|;(2)
PE
OF
(λ∈R,且λ≠0);(3)动点P的轨迹C经过点B(0,-1).
(Ⅰ)求曲线C的方程;
(Ⅱ)是否存在方向向量为
m
=(1,k)(k≠0)的直线l,l与曲线C相交于M、N两点,使|
BM
|=|
BN
|,且
BM
BN
的夹角为60°?若存在,求出k值,并写出直线l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案