精英家教网 > 高中数学 > 题目详情
已知双曲线x2-
y2
2
=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点(  )
A.(3,0)B.(1,0)C.(-3,0)D.(4,0)
相关习题

科目:高中数学 来源:浙江模拟 题型:单选题

已知双曲线x2-
y2
2
=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点(  )
A.(3,0)B.(1,0)C.(-3,0)D.(4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
2
=1的焦点为F1、F2,点M在双曲线上且
MF1
MF2
=0,则△F1MF2的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知双曲线x2-
y2
2
=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A和点B是双曲线x2-
y2
2
=1上的两点,O为坐标原点,且满足
OA
OB
=0,则点O到直线AB的距离等于(  )
A、
2
B、
3
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
与双曲线
x2
3
-
y2
2
=1
具有相同的焦点F1,F2,且顶点P(0,b)满足cos∠F1PF2=-
1
9

(1)求椭圆的方程;
(2)设过抛物线x2=12y焦点F的直线交椭圆于A、B两点,若
FA
FB
,求实数λ的范围.

查看答案和解析>>

科目:高中数学 来源:宝坻区二模 题型:单选题

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A.
x2
2
-
y2
3
=1
B.
x2
3
-
y2
2
=1
C.
x2
4
-y2=1
D.x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
与双曲线
x2
3
-
y2
2
=1
具有相同的焦点F1,F2,且顶点P(0,b)满足cos∠F1PF2=-
1
9

(1)求椭圆的方程;
(2)设过抛物线x2=12y焦点F的直线交椭圆于A、B两点,若
FA
FB
,求实数λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的准线与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B两点,双曲线的一条渐近线方程是y=2
2
x
,点F是抛物线的焦点,且△FAB是直角三角形,则双曲线的标准方程是(  )
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>


同步练习册答案