对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=
|
科目:高中数学 来源: 题型:
| G(x1)+G(x2) |
| 2 |
| x1+x2 |
| 2 |
科目:高中数学 来源: 题型:
科目:高中数学 来源: 题型:
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
科目:高中数学 来源: 题型:
| b |
| 3a |
| b |
| 3a |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
科目:高中数学 来源: 题型:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
| 2013 |
| 2013 |
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 | ||
x-
|
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 4 |
| 2011 |
| 2010 |
| 2011 |
科目:高中数学 来源: 题型:
科目:高中数学 来源: 题型:
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 12 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 2012 |
| 2013 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com