精英家教网 > 高中数学 > 题目详情
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数f(x)=x3-
3
2
x2+3x-
1
4
,则它的对称中心为
(
1
2
,1)
(
1
2
,1)
;计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012
分析:①由于f(x)=x3-
3
2
x2+3x-
1
4
,f′(x)=3x2-3x+3,f″(x)=6x-3,由f″(x)=0可求得x=
1
2
,f(
1
2
)=1;
②设P(x0,y0)为曲线上任意一点,由于函数f(x)=x3-
3
2
x2+3x-
1
4
的对称中心为 (
1
2
,1)
,故点P关于(
1
2
,1)
的对称点P′(1-x0,2-y0)也在曲线上,于是有f(1-x0)=2-y0.从而可求值.
解答:解:①∵f(x)=x3-
3
2
x2+3x-
1
4

∴f′(x)=3x2-3x+3,f″(x)=6x-3,
由f″(x)=0得x=
1
2

f(
1
2
)=
1
8
-
3
2
×
1
4
+3×
1
2
-
1
4
=1;
∴它的对称中心为(
1
2
,1)

②设P(x0,y0)为曲线上任意一点,
∵曲线的对称中心为 (
1
2
,1)

∴点P关于(
1
2
,1)
的对称点P′(1-x0,2-y0)也在曲线上,
∴f(1-x0)=2-y0
∴f(x0)+f(1-x0)=y0+(2-y0)=2.
f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=[f(
1
2013
)+f(
2012
2013
)
]+[f(
2
2013
)+f(
2011
2013
)
]+…+[f(
1006
2013
)+f(
1007
2013
)
]=2×1006=2012.
故答案为:(
1
2
,1)
;2012.
点评:本题考查实际问题中导数的意义,难点在于对“对称中心”的理解与应用,特别是:f(x0)+f(1-x0)=2的分析与应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
 

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据上面探究结果,解答以下问题
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
1
2
,1)
1
2
,1)

(2)计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,则该函数的对称中心为
(
1
2
,1)
(
1
2
,1)
,计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f''(x)是函数y=f(x)的导数f′(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心”,且‘拐点’就是对称中心.请你将这一发现作为条件.
(1).函数f(x)=x3-3x2+3x的对称中心为
(1,2)
(1,2)

(2).若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)对于三次函数f(x)-ax3+bx2+cx+d(a≠0),给出定义:设ft(x)是函数y=f(x)的导数,ftt(x)是函数ft的导数,若方程ftt(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个一元三次函数都有“拐点”;且该“拐点”也为该函数的对称中心.若f(x)=x3-
3
2
x2+
1
2
x+1,则f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)=(  )

查看答案和解析>>

同步练习册答案