精英家教网 > 高中数学 > 题目详情
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有的同学发现“任何三次函数都有‘拐点’;任何三次函数都有对称中心;且对称中心就是‘拐点’”.请你根据这一发现判断下列命题:
(1)任意三次函数都关于点(-
b
3a
,f(-
b
3a
))
对称; 
(2)存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心; 
(3)存在三次函数有两个及两个以上的对称中心; 
(4)若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006

其中正确命题的序号为(  )
分析:(1)利用新定义,可知(1)正确;
(2)由(1)知,x0=-
b
3a
,代入f'(x)=0,可得b2=3ac,由此可得结论;
(3)由(1)知,三次函数有且只有一个对称中心;
(4)求出对称中心,即可得到结论.
解答:解:(1)由题意,f′(x)=3ax2+2bx+c(a≠0),∴f″(x)=6ax+2b(a≠0),
∴令f″(x)=0,可得x=-
b
3a
,∴任意三次函数都关于点(-
b
3a
,f(-
b
3a
))
对称,故(1)正确; 
(2)由(1)知,x0=-
b
3a
,代入f'(x)=0,可得3a×
b2
9a2
-2b×
b
3a
+c=0
,∴b2=3ac,此时,存在三次函数,f'(x)=0有实数解x0,(x0,f(x0))点为函数y=f(x)的对称中心,故(2)正确; 
(3)由(1)知,三次函数有且只有一个对称中心,即不存在三次函数有两个及两个以上的对称中心,故(3)不正确; 
(4)∵g(x)=
1
3
x3-
1
2
x2-
5
12
,∴g′(x)=x2-x
∴g″(x)=2x-1
令g″(x)=0,可得x=
1
2
,∴g(1)=-
1
2

g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心为(
1
2
,-
1
2
)

∴g(x)+g(1-x)=-1
g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006
,即(4)正确,
故选A.
点评:本小题考查新定义,考查函数与导数等知识,考查化归与转化的数学思想方法,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
 

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据上面探究结果,解答以下问题
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
1
2
,1)
1
2
,1)

(2)计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,则该函数的对称中心为
(
1
2
,1)
(
1
2
,1)
,计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f''(x)是函数y=f(x)的导数f′(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心”,且‘拐点’就是对称中心.请你将这一发现作为条件.
(1).函数f(x)=x3-3x2+3x的对称中心为
(1,2)
(1,2)

(2).若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)对于三次函数f(x)-ax3+bx2+cx+d(a≠0),给出定义:设ft(x)是函数y=f(x)的导数,ftt(x)是函数ft的导数,若方程ftt(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个一元三次函数都有“拐点”;且该“拐点”也为该函数的对称中心.若f(x)=x3-
3
2
x2+
1
2
x+1,则f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)=(  )

查看答案和解析>>

同步练习册答案