精英家教网 > 高中数学 > 题目详情
M=(a+1)(a2+
a
2
+1),N=(a+
1
2
)(a2+a+1)
,则M与N的大小关系是(  )
A.M>NB.M=NC.M<ND.不确定
相关习题

科目:高中数学 来源: 题型:

M=(a+1)(a2+
a
2
+1),N=(a+
1
2
)(a2+a+1)
,则M与N的大小关系是(  )
A、M>NB、M=N
C、M<ND、不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

M=(a+1)(a2+
a
2
+1),N=(a+
1
2
)(a2+a+1)
,则M与N的大小关系是(  )
A.M>NB.M=NC.M<ND.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(2-a)lnx+
1
x
+2ax.
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a≠0时,求f(x)的单调区间;
(Ⅲ)当a=2时,对任意的正整数n,在区间[
1
2
,6+n+
1
n
]上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)椭圆E
x
2
 
a
2
 
+
y2
b
2
 
=1(a>b>0)
的离心率为
1
2
,F1(-c,0),F2(c,0)分别是左、右焦点,过F1的直线与圆(x+
c
 
 
)
2
 
+(y+2
)
2
 
=1
相切,且与椭圆E交于A,B两点,且|AB|=
16
5

(1)求椭圆E的方程;
(2)设M为椭圆E上一动点,点N(0,2
3
),求|
MN
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(2-a)lnx+
1
x
+2ax

(1)当a=0时,求f(x)的极值;
(2)当a≠0时,求f(x)的单调区间;
(3)当a=2时,对任意的正整数n,在区间[
1
2
,6+n+
1
n
]
上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(2-a)lnx+
1
x
+2ax
;(a∈R).
(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间[
1
2
,6+n+
1
n
]
上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
在平面直角坐标系xoy中,椭圆E:(a>0,b>0)经过点A(),且点F(0,-1)为其一个焦点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P在直线y=b2上运动,直线PA1,PA2分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{a}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,S5=a32
(1)求通项an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,设Tn=b1+b2+…+bn-n,若M>Tn>m对一切正整数n恒成立,求实数M、m的取值范围;
(3)试构造一个函数g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且对任意的m∈(
1
4
1
3
)
,均存在正整数N,使得当n>N时,f(n)>m.

查看答案和解析>>

科目:高中数学 来源:佛山二模 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=( a1 , a2)
b
=( b1 , b2)
,定义一种向量运算:
a
?
b
=( a1b1 , a2b2)
,已知
m
=(
1
2
 , 2a)
n
=(
π
4
 , 0)
,点P(x,y)在函数g(x)=sinx的图象上运动,点Q在函数y=f(x)的图象上运动,且满足
OQ
=
m
?
OP
+
n
(其中O为坐标原点).
(1)求函数f(x)的解析式;
(2)若函数h(x)=2asin2x+
3
2
f(x-
π
4
)+b
,且h(x)的定义域为[
π
2
 , π]
,值域为[2,5],求a,b的值.

查看答案和解析>>


同步练习册答案