精英家教网 > 高中数学 > 题目详情
某同学在研究函数f(x)=
2x
|x|+1
(x∈R)时,给出下列结论:
①f(-x)+f(x)=0对任意x∈R成立;
②函数f(x)的值域是(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数g(x)=f(x)-2x在R上有三个零点.
则正确结论的序号是(  )
A.②③④B.①③④C.①②③D.①②③④
相关习题

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
2x
|x|+1
(x∈R)时,给出下列结论:
①f(-x)+f(x)=0对任意x∈R成立;
②函数f(x)的值域是(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数g(x)=f(x)-2x在R上有三个零点.
则正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某同学在研究函数f(x)=
2x
|x|+1
(x∈R)时,给出下列结论:
①f(-x)+f(x)=0对任意x∈R成立;
②函数f(x)的值域是(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数g(x)=f(x)-2x在R上有三个零点.
则正确结论的序号是(  )
A.②③④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
2x|x|+1
(x∈R)
时,分别得出如下几个结论:
①等式f(-x)+f(x)=0在x∈R时恒成立;
②函数f(x)的值域为(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数y(x)=f(x)-2x在R上有三个零点.
其中正确的序号有
①②③
①②③

查看答案和解析>>


同步练习册答案