精英家教网 > 高中数学 > 题目详情
已知ab=m (其中a>0,b>0,m≠1)且logma=x,则logmb值为(  )
A.1-xB.1+xC.
1
x
D.x-1
相关习题

科目:高中数学 来源: 题型:

已知ab=m (其中a>0,b>0,m≠1)且logma=x,则logmb值为(  )
A、1-x
B、1+x
C、
1
x
D、x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ab=m (其中a>0,b>0,m≠1)且logma=x,则logmb值为(  )
A.1-xB.1+xC.
1
x
D.x-1

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知ab=m (其中a>0,b>0,m≠1)且logma=x,则logmb值为


  1. A.
    1-x
  2. B.
    1+x
  3. C.
    数学公式
  4. D.
    x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2b2
=1(0<b<1)
的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(1)当m+n>0时,求椭圆离心率的范围;
(2)直线AB与⊙P能否相切?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
2
=1(a>
2
)的离心率为
2
2
,双曲线C与该椭圆有相同的焦点,其两条渐近线与以点(0,
2
)为圆心,1为半径的圆相切.
(1)求双曲线C的方程;
(2)设直线y=mx+1与双曲线C的左支交于A、B两点,另一直线l经过点M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logm
1+x
1-x
,其中m>0,m≠1.
(1)判断函数f(x)奇偶性并加以证明;
(2)已知|a|<1,|b|<1,且f(
a+b
1+ab
)=1
f(
a-b
1-ab
)=2
,求[f(a)]2-[f(b)]2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=
15
2
PF1
PF2
=
3
4
其中O为坐标原点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,在x轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=
15
2
PF1
PF2
=
3
4
其中O为坐标原点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,在x轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
2
=1(a>
2
)的离心率为
2
2
,双曲线C与该椭圆有相同的焦点,其两条渐近线与以点(0,
2
)为圆心,1为半径的圆相切.
(1)求双曲线C的方程;
(2)设直线y=mx+1与双曲线C的左支交于A、B两点,另一直线l经过点M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.

查看答案和解析>>


同步练习册答案