精英家教网 > 高中数学 > 题目详情
设x∈R,则“x>
1
2
”是“(2x-1)(x+1)>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
相关习题

科目:高中数学 来源: 题型:

设x∈R,则“x>
1
2
”是“(2x-1)(x+1)>0”的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x∈R,则“x>
1
2
”是“(2x-1)(x+1)>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg
1x+2x+3x+…+(m-1)x+mxa
m
,其中a∈R,m是给定的正整数,且m≥2.如果不等式f(x)>(x-1)lgm在区间[1,+∞)上有解,则实数a的取值范围是
a
1
2
a
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数f(x)=loga(x-2)-1(a>0,a≠1)的图象恒过定点(3,-1);
②若函数y=f(x+1)的定义域是[-1,1],则y=f(x)的定义域是[-2,0];
③若函数y=f(x)是奇函数,当x<0时,f(x)=x2+5x,则f(2)=6
④设α∈{-1,
1
3
1
2
,1,2,3}
,则使幂函数y=xα为奇函数且在(0,+∞)上单调递增的α值的个数为3个
⑤若函数y=|2x-1|-m(m∈R)只有一个零点,则m≥1
其中正确的命题的序号是
①③⑤
①③⑤
( 注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于下列命题:
①函数f(x)=loga(x-2)-1(a>0,a≠1)的图象恒过定点(3,-1);
②若函数y=f(x+1)的定义域是[-1,1],则y=f(x)的定义域是[-2,0];
③若函数y=f(x)是奇函数,当x<0时,f(x)=x2+5x,则f(2)=6
④设α∈{-1,
1
3
1
2
,1,2,3}
,则使幂函数y=xα为奇函数且在(0,+∞)上单调递增的α值的个数为3个
⑤若函数y=|2x-1|-m(m∈R)只有一个零点,则m≥1
其中正确的命题的序号是______( 注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①函数f(x)=2x满足:对任意x1,x2∈R,有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函数f(x)=log2(x+
1+x2
)
,g(x)=1+
2
2x-1
均是奇函数;
③若函数f(x)的图象关于点(1,0)成中心对称图形,且满足f(4-x)=f(x),那么f(2)=f(2012);
④设x1,x2是关于x的方程|logax|=k(a>0,a≠1)的两根,则x1x2=1.
其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)已知函数f(x)对任意的x,y∈R,均有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1,设M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,则实数a的取值范围是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“?x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正确的说法序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“?x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正确的说法序号是______.

查看答案和解析>>


同步练习册答案