精英家教网 > 高中数学 > 题目详情
现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=(  )
A.
2012
2013
B.
4024
2013
C.
2011
2012
D.
4022
2012
相关习题

科目:高中数学 来源: 题型:

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=(  )
A.
2012
2013
B.
4024
2013
C.
2011
2012
D.
4022
2012

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高一(下)期中数学试卷(解析版) 题型:选择题

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

已知数列{an}满足:a1=a,an+1=1+,不难发现,当a取不同的值时,可以得到不同的数列,例如,当a=1时,得到无穷数列:1,2,,…;当a=-时,得到有穷数列:-,-1,0。
(1)当a为何值时,a4=0;
(2)设数列{bn}满足:b1=-1,bn+1=(n∈N*)求证:a取数列{bn}中的任何一个数,都可得到一个有穷数列{an};
(3)若对任意n∈N*且n≥5,都有<an<2成立,试求a 的取值范围。

查看答案和解析>>

科目:高中数学 来源:浙江省模拟题 题型:填空题

定义在某区间上的函数f(x)满足对该区间上的任意两个数x1,x2总有不等式成立,则称函数f(x)为该区间上的上凸函数. 类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为上凸数列,现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10,则数列{an}中的第五项a5的取值范围为(    )。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式数学公式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:数学公式成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省宿迁中学高考数学模拟试卷(解析版) 题型:填空题

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市如东县掘港中学高考数学一模试卷(解析版) 题型:填空题

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2012年浙江省高考数学冲刺试卷3(理科)(解析版) 题型:解答题

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2010年上海市浦东新区高考数学二模试卷(理科)(解析版) 题型:解答题

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>


同步练习册答案