精英家教网 > 高中数学 > 题目详情
m=-1是直线mx+y-3=0与直线2x+m(m-1)y+2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
相关习题

科目:高中数学 来源: 题型:

m=-1是直线mx+y-3=0与直线2x+m(m-1)y+2=0垂直的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

m=-1是直线mx+y-3=0与直线2x+m(m-1)y+2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市宁海县正学中学高二(上)第二次段考数学试卷(理科)(重点班)(解析版) 题型:选择题

m=-1是直线mx+y-3=0与直线2x+m(m-1)y+2=0垂直的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面的问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线l:
2
x-y
+
5
=0
的距离分别为d1、d2,试求d1•d2的值,并判断直线l与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线l:mx+ny+p=0(m、n不同时为零)的距离分别为d1、d2,且直线l与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的相交、相离位置关系的充要条件(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线M的中心在原点,并以椭圆数学公式+数学公式=1的焦点为焦点,以抛物线y2=-2数学公式x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得数学公式数学公式=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省襄樊五中高三五月调考数学试卷(文科)(解析版) 题型:解答题

双曲线M的中心在原点,并以椭圆+=1的焦点为焦点,以抛物线y2=-2x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出命题p:直线ax+3y+1=0与直线2x+(a+1)y+1=0互相平行的充要条件是a=-3;命题q:若mx2-mx-1<0恒成立,则-4<m<0.关于以上两个命题,下列结论正确的是(  )
A、命题“p∧q”为真B、命题“p∨q”为假C、命题“p∧¬q”为真D、命题“p∨¬q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)给出下列结论:
①函数y=tan
x
2
在区间(-π,π)上是增函数;
②不等式|2x-1|>3的解集是{x|x>2};
m=
2
是两直线2x+my+1=0与mx+y-1=0平行的充分不必要条件;
④函数y=x|x-2|的图象与直线y=
1
2
有三个交点.
其中正确结论的序号是
①③④
①③④
(把所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>


同步练习册答案