精英家教网 > 高中数学 > 题目详情
函数y=
x2+1
x
(x≠0)
的值域是(  )
A.[2,+∞)B.(-∞,-2]C.(-∞,-2]∪[2,+∞)D.[-2,2]
相关习题

科目:高中数学 来源: 题型:

函数y=
x2+1
x
(x≠0)
的值域是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
x2+1
x
(x≠0)
的值域是(  )
A.[2,+∞)B.(-∞,-2]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+1
x
(x>0)
的值域是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
x2+1
x
(x>0)
的值域是(  )
A.[2,+∞)B.(-∞,-2]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)=
a+1
a
-
1
x
(a>0)
有“和谐区间”,则函数g(x)=
1
3
x3+
1
2
ax2+(a-1)x+5
的极值点x1,x2满足(  )
A、x1∈(0,1),x2∈(1,+∞)
B、x1∈(-∞,0),x2∈(0,1)
C、x1∈(-∞,0),x2∈(-∞,0)
D、x1∈(1,+∞),x2∈(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若函数y=f(x)在某一区间D上任取两个实数x1、x2,且x1≠x2,都有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,则称函数y=f(x)在区间D上具有性质L.
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明).
(2)对于函数f(x)=x+
1
x
,判断其在区间(0,+∞)上是否具有性质L?并用所给定义证明你的结论.
(3)若函数f(x)=
1
x
-ax2
在区间(0,1)上具有性质L,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,值域是R+的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|的最小正周期为π;
②若函数f(x)=log2(x2-ax+1)的值域为R,则-2<a<2;
③若函数f(x)对任意x∈R都有f(x)=-f(2-x),且最小正周期为3,则f(x)的图象关于点(-
1
2
,0)
对称;
④极坐标方程 4sin2θ=3 表示的图形是两条相交直线;
⑤若函数f(x)=(1+x)
1
x
(x>0)
,则存在无数多个正实数M,使得|f(x)|≤M成立;
其中真命题的序号是
③④⑤
③④⑤
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,值域为(0,+∞)的是(  )
A.y=log2(x+1)B.y=(
1
2
)x-1
C.y=x+
1
x
(x≠0)
D.y=x2-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>


同步练习册答案