精英家教网 > 高中数学 > 题目详情
P是双曲线
x2
a2
-
y2
b2
=1
上的点,F1、F2是其焦点,双曲线的离心率是
5
4
,且∠F1PF2=900,若△F1PF2的面积为9,则a+b的值(a>0,b>0)等于(  )
A.4B.7C.6D.5
相关习题

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1
上的点,F1、F2是其焦点,双曲线的离心率是
5
4
,且∠F1PF2=900,若△F1PF2的面积为9,则a+b的值(a>0,b>0)等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线
x2
a2
-
y2
b2
=1
上的点,F1、F2是其焦点,双曲线的离心率是
5
4
,且∠F1PF2=900,若△F1PF2的面积为9,则a+b的值(a>0,b>0)等于(  )
A.4B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的点,F1、F2是其焦点,且
PF1
PF2
=0,若△F1PF2的面积是9,a+b=7,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的点,F1、F2是其焦点,且
PF1
PF2
=0,若△F1PF2的面积是9,a+b=7,则双曲线的离心率为(  )
A.
7
4
B.
5
4
C.
5
2
D.
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)左支上的一点,F1、F2分别是双曲线的左、右焦点,则以|PF2|为直径的圆与以双曲线的实轴为直径的圆的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上除顶点外的任意一点,F1、F2分别是双曲线的左、右焦点,△PF1F2的内切圆与边F1F2相切于点M,则
F1M
MF2
=(  )
A.a2B.b2C.a2+b2D.
1
2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF1F2的内切圆的圆心横坐标为(  )
A、-aB、aC、-cD、c

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为:A.(1,3);B.(1,3];C.(3,+∞);D.[3,+∞)”其正确选项是B.若将其中的条件“|PF1|=2|PF2|”更换为“|PF1|=k|PF2|,k>0且k≠1”,试经过合情推理,得出双曲线离心率的取值范围是
 
.(用k表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1
上除顶点外的任意一点,F1、F2分别为左、右焦点,c为半焦距,△PF1F2的内切圆与F1F2切于点M,则|F1M|•|F2M|=
 

查看答案和解析>>


同步练习册答案