精英家教网 > 高中数学 > 题目详情
函数f(x)的图象在[-2,2]上为连续不断的曲线,且满足2012f(-x)=
1
2012f(x)
,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围是(  )
A.
1
4
≤m≤4
B.
31
16
≤m≤14
C.[
1
4
,2)
D.0<m<2
相关习题

科目:高中数学 来源: 题型:

函数f(x)的图象在[-2,2]上为连续不断的曲线,且满足2012f(-x)=
1
2012f(x)
,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的图象在[-2,2]上为连续不断的曲线,且满足2012f(-x)=
1
2012f(x)
,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围是(  )
A.
1
4
≤m≤4
B.
31
16
≤m≤14
C.[
1
4
,2)
D.0<m<2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市奉节中学高三(上)期中数学试卷(文科)(解析版) 题型:选择题

函数f(x)的图象在[-2,2]上为连续不断的曲线,且满足2012f(-x)=,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围是( )
A.≤m≤4
B.≤m≤14
C.[,2)
D.0<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f(x)的图象在[-2,2]上为连续不断的曲线,且满足2012f(-x)=数学公式,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围是


  1. A.
    数学公式≤m≤4
  2. B.
    数学公式≤m≤14
  3. C.
    [数学公式,2)
  4. D.
    0<m<2

查看答案和解析>>

科目:高中数学 来源:2012年湖北省黄冈市高三三月调考数学试卷(文科)(解析版) 题型:填空题

函数f(x)的图象在R上为连续不断的曲线,且满足,且在[0,+∞)上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围为   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数f(x)的图象在R上为连续不断的曲线,且满足数学公式,且在[0,+∞)上是增函数,若f(log2m)<f[log4(m+2)]成立,则实数m的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

4、若函数f(x)的图象是连续不断的,且f(0)>0,f(1)>0,f(2)<0,则加上下列哪个条件可确定f(x)有唯一零点
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,
π
2
],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
π
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断曲线,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函数f(t)在D上的最小值,max{f(t)|x∈D}表示函数f(t)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx(0≤x≤
n
2
),试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
n
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>


同步练习册答案