精英家教网 > 初中数学 > 题目详情
正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于(  )
A.6B.8C.12D.20
相关习题

科目:初中数学 来源: 题型:

13、正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于(  )
A.6B.8C.12D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

25、
多面体 顶点数(V) 面数(F) 棱数(E)
四面体 4 4
6
长方体 8
6
12
正八面体
6
8 12
正十二面体 20 12 30
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
V+F-E=2

(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是
面体

查看答案和解析>>

科目:初中数学 来源: 题型:

填一填,想一想
图形 顶点数(V) 面数(F) 棱数(E) V+F-E
(1)你能从上表中的三组数据猜测V、F和E三个数之间有什么关系吗?
(2)你知道吗?现实中只有如图的五种正多面体,请你数一数它们的顶点数、面数、棱数,看看是否也符合上述关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

填一填,想一想
图形顶点数(V)面数(F)棱数(E)V+F-E
(1)你能从上表中的三组数据猜测V、F和E三个数之间有什么关系吗?
(2)你知道吗?现实中只有如图的五种正多面体,请你数一数它们的顶点数、面数、棱数,看看是否也符合上述关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

填写下表,根据下表所填的数据,找出顶点数(V)、面数(F)与棱数(E)之间的关系:
正多面体 顶点数(V) 面数(F) 棱数(E)
正四面体
 
 
 
 
 
正六面体
 
 
 
 
正八面体
 
 
 
正十二面体
 
 
 
正二十面体
 
 
 

查看答案和解析>>

科目:初中数学 来源:2012年浙教版初中数学八年级上3.1认识直棱柱练习卷(解析版) 题型:选择题

正多面体的面数、棱数、顶点数三在之间存在一个奇特的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于(    )

(A)6             (B) 8              (C)  12            (D) 20

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

正多面体的面数、棱数、顶点数三在之间存在一个奇特的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于


  1. A.
    6
  2. B.
    8
  3. C.
    12
  4. D.
    20

查看答案和解析>>

科目:初中数学 来源: 题型:

(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:

1.(1)根据上面多面体模型,完成表格中的空格:

多面体

顶点数(V)

面数(F)

棱数(E)

四面体

4

4

6

长方体

8

6

12

正八面体

6

8

12

正十二面体

 

 

 

2.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是       

3.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是       

4.(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=       

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:

【小题1】(1)根据上面多面体模型,完成表格中的空格:
多面体
顶点数(V)
面数(F)
棱数(E)
四面体
4
4
6
长方体
8
6
12
正八面体
6
8
12
正十二面体
 
 
 
【小题2】(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是       
【小题3】(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是       
【小题4】(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=       

查看答案和解析>>


同步练习册答案