精英家教网 > 高中数学 > 题目详情
设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},则(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A.{0,3}B.{1,2}C.(3,4,5}D.{1,2,6,7}
相关习题

科目:高中数学 来源: 题型:

设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},则(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A、{0,3}
B、{1,2}
C、{3,4,5}
D、{1,2,6,7}

查看答案和解析>>

科目:高中数学 来源:浙江 题型:单选题

设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},则(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A.{0,3}B.{1,2}C.(3,4,5}D.{1,2,6,7}

查看答案和解析>>

科目:高中数学 来源:2005年浙江省高考数学试卷(理科)(解析版) 题型:选择题

设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记={n∈N|f(n)∈P},={n∈N|f(n)∈Q},则(∩CN)∪()=( )
A.{0,3}
B.{1,2}
C.(3,4,5}
D.{1,2,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x(e为自然对数的底数)
(Ⅰ)求f(x)的最小值;
(Ⅱ)设不等式f(x)>ax的解集为P,且{x|0≤x≤2}⊆P,求实数a的取值范围;
(Ⅲ)设n∈N*,证明:(
1
n
)n+(
2
n
)n+…+(
n-1
n
)n+(
n
n
)n
1
1-e-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设M=10a2+81a+207,P=a+2,Q=26-2a;若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并证明T2T3T4…Tn
2n-1
n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设M=10a2+81a+207,P=a+2,Q=26-2a;若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项.
(1)试比较M、P、Q的大小;
(2)求a的值及{an}的通项;
(3)记函数f(x)=anx2+2an+1x+an+2(n∈N*)的图象在x轴上截得的线段长为bn,设Tn=
1
4
(b1b2+b2b3+…+bn-1bn
)(n≥2),求Tn,并证明T2T3T4…Tn
2n-1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>


同步练习册答案