设有一个回归直线方程为
|
科目:高中数学 来源: 题型:
| ? |
| y |
. |
| x |
| A、(-2.5,2) |
| B、(1,-0.5) |
| C、(2.5,4.25) |
| D、(1,4.5) |
科目:高中数学 来源:不详 题型:单选题
| ? |
| y |
| . |
| x |
| A.(-2.5,2) | B.(1,-0.5) | C.(2.5,4.25) | D.(1,4.5) |
科目:高中数学 来源: 题型:
| y |
| b |
| a |
| x |
| -x |
| 2 |
科目:高中数学 来源: 题型:044
某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机选了
10个企业做样本,资料见表.
由资料知,
y对x有线性相关关系.(1)
设回归直线方程为y=bx+a,求系数a,b.(2)
试估计产量为35000件时的生产费用.科目:高中数学 来源:数学教研室 题型:044
某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机选了10个企业做样本,资料见表.
由资料知,y对x有线性相关关系.
(1)设回归直线方程为y=bx+a,求系数a,b.
(2)试估计产量为35000件时的生产费用.
科目:高中数学 来源:训练必修三数学人教A版 人教A版 题型:044
某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽取选了10个企业作样本,有如下资料:
![]()
完成下列要求:
(1)画出散点图,并判断它们是否有相关关系;
(2)若y与x之间具有线性相关关系,设回归直线方程为y^=bx+a,求系数a、b.
科目:高中数学 来源: 题型:
产量(千件) | 40 | 42 | 48 | 55 | 65 | 79 | 88 | 100 | 120 | 140 |
生产费用(千元) | 150 | 140 | 160 | 170 | 150 | 162 | 185 | 165 | 190 | 185 |
完成下列要求:
(1)画出散点图,并判断它们是否有相关关系;
(2)若y与x之间具有线性相关关系,设回归直线方程为y^=bx+a,求系数a、b。
科目:高中数学 来源:选修设计数学1-2北师大版 北师大版 题型:013
下列说法中错误的是
A.如果变量η与ζ之间存在着线性相关关系,则我们根据实验数据得到的点(xi,yi)(i=1,2,3,…n)将散布在某一条直线附近
B.如果两个变量ζ与η之间不存在线性关系,那么根据实验数据不能写出一个线性方程
C.设x、y是具有线性相关的两个变量,且回归直线方程是y=bx+a,则b叫回归系数
D.为使求出的线性回归方程有意义,可用统计假设检验的方法判断变量ζ与η之间是否存在线性相关关系
科目:高中数学 来源: 题型:
产量x(千件) | 40 | 42 | 48 | 55 | 65 | 79 | 88 | 100 | 120 | 140 |
生产费用y(千元) | 150 | 140 | 160 | 170 | 150 | 162 | 185 | 165 | 190 | 185 |
完成下列要求:
(1)计算x与y的相关系数;
(2)对这两个变量之间是否线性相关进行相关性检验;
(3)设回归直线方程为
=bx+a,求系数a,b.
科目:高中数学 来源: 题型:
A.如果变量η与ξ之间存在着线性相关关系,则我们根据实验数据得到的点(xi,yi)(i=1,2, …,n)将散布在某一条直线的附近
B.如果两个变量η与ξ之间不存在着线性相关关系,那么根据它们的一组数据(xi,yi)(i=1,2, …,n)不能写出一个线性方程
C.设x,y是具有相关关系的两个变量,且x关于y的线性回归方程为
=bx+a,b叫做回归系数
D.为使求出的线性回归方程有意义,可用统计假设检验的方法来判定变量η与ξ之间是否存在线性相关关系
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com