精英家教网 > 高中数学 > 题目详情
当a>0时,设命题P:函数f(x)=x+
a
x
在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是(  )
A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2
相关习题

科目:高中数学 来源: 题型:

当a>0时,设命题P:函数f(x)=x+
a
x
在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是(  )
A、0<a≤1
B、1≤a<2
C、0≤a≤2
D、0<a<1或a≥2

查看答案和解析>>

科目:高中数学 来源:珠海二模 题型:单选题

当a>0时,设命题P:函数f(x)=x+
a
x
在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是(  )
A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=x2-2ax-1在区间[-1,1]内不单调;命题q:当x∈(0,+∞)时,不等式x2-ax+1>0恒成立.如果命题p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数f(x)=
1
3
(1-x)
且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:函数f(x)=
1
3
(1-x)
且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第16期 总第172期 人教课标版(A选修1-1) 题型:044

设命题p:若y=f(x)为单调增函数,则y=f(ax)(a>0,a≠1)也是单调增函数;命题q:存在实数a,使关于x的方程x2+2x+loga=0无解.当p为真且q为假时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省新建二中2010届高三上学期第一次月考数学文科试题 题型:044

设命题p:若y=f(x)为单调增函数,则y=f(ax)(a>0,a≠1)也是单调增函数.命题q:存在实数a,使关于x的方程x2+2x+loga=0的解集只有一个子集.当p或q有且只有一个正确时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题P:函数数学公式且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,数学公式,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=(
1
a
)x
为增函数.命题q:当x∈[
1
2
,2]时函数f(x)=x+
1
x
1
a
恒成立.如果p∨q为真命题,p∧q为假命题,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:①函数f(x)=3sin(2x-
π
3
)
的图象关于点(-
π
6
,0)
对称;②若a≥b>-1,则
a
1+a
b
1+b
;③存在实数x,使x3+x2+1=0;④设P(x1,y1)为圆O1:x2+y2=9上任意一点,圆O2:(x-a)2+(y-b)2=1,当(x1-a)2+(y1-b)2=1时,两圆相切.其中正确命题的序号是
 
.(把你认为正确的都填上)

查看答案和解析>>


同步练习册答案