精英家教网 > 高中数学 > 题目详情
函数f(x)=
lnx
x
(  )
A.在(-∞,e)上单调递增
B.在(-∞,0)和(0,e)上单调递增
C.在(e,+∞)上单调递增
D.在(0,e)上单调递增
相关习题

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
lnx
x
(  )(e是自然对数的底数)
A.在(0,e)上是减函数B.在(0,+∞)上是增函数
C.在(e,+∞)上是减函数D.在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-a+lnxx
,a∈R
(I)求f(x)的极值;
(II)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(III)已知x1>0,x2>0,且x1+x2<e,求证:x1+x2>x1x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-a+lnx
x
,a∈R
(I)求f(x)的极值;
(II)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(III)已知x1>0,x2>0,且x1+x2<e,求证:x1+x2>x1x2

查看答案和解析>>

科目:高中数学 来源:孝感模拟 题型:解答题

已知函数f(x)=
1-a+lnx
x
,a∈R

(1)求f(x)的极值;
(2)若lnx-kx<0在(0,+∞)上恒成立,求实数k的取值范围;
(3)若f(x)-e=0在[
1
e2
,1]
上有唯一实根,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,g(x)=-
lnx
x
,求证:当x∈(0,e]时,f(x)<g(x)+
1
2
恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-a+lnx
x
,a∈R.
(1)求f(x)的极值;
(2)若关于x的不等式
lnx
x
e(
2
k+1
-2)
在(0,+∞)上恒成立,求k的取值范围;
(3)证明:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-a+lnx
x
,a∈R.
(1)求f(x)的极值;
(2)若关于x的不等式
lnx
x
e(
2
k+1
-2)
在(0,+∞)上恒成立,求k的取值范围;
(3)证明:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+lnx
x
,且f(x)+g(x)=
(x+1)lnx
x

(1)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(2)若函数g(x)在[1,e]上的最小值为
3
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
a+lnx
x
,且f(x)+g(x)=
(x+1)lnx
x

(1)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(2)若函数g(x)在[1,e]上的最小值为
3
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知函数f(x)=
1-a+lnx
x
,a∈R

(1)求f(x)的极值;
(2)若lnx-kx<0在(0,+∞)上恒成立,求实数k的取值范围;
(3)若f(x)-e=0在[
1
e2
,1]
上有唯一实根,求实数a的范围.

查看答案和解析>>


同步练习册答案