精英家教网 > 高中数学 > 题目详情
用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
时,由n=k到n=k+1时,不等式左边应添加的式子为(  )
A.
1
2k+1
B.
1
2k+2
C.
1
2k+1
+
1
2k+2
D.
1
2k+1
-
1
2k+2
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
时,由n=k到n=k+1时,不等式左边应添加的式子为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
1
24
(n∈N*)由n=k到n=k+1时,不等式左边应添加的项是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
时,由n=k到n=k+1时,不等式左边应添加的式子为(  )
A.
1
2k+1
B.
1
2k+2
C.
1
2k+1
+
1
2k+2
D.
1
2k+1
-
1
2k+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
1
24
(n∈N*)由n=k到n=k+1时,不等式左边应添加的项是(  )
A.
1
2(k+1)
B.
1
2k+1
+
1
2k+2
C.
1
2k+1
+
1
2k+2
-
1
k+1
D.
1
2k+1
+
1
2k+2
-
1
k+1
-
1
k+2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>1且n∈N)时,在证明n=k+1这一步时,需要证明的不等式是(  )
A、
1
k+1
+
1
k+2
+…+
1
2k
13
24
B、
1
k+1
+
1
k+3
+…+
1
2k
+
1
2k+1
13
24
C、
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
13
24
D、
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2k+2
13
24

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
9
10
(n>1,且n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>1且n∈N)时,在证明n=k+1这一步时,需要证明的不等式是(  )
A.
1
k+1
+
1
k+2
+…+
1
2k
13
24
B.
1
k+1
+
1
k+3
+…+
1
2k
+
1
2k+1
13
24
C.
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
13
24
D.
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2k+2
13
24

查看答案和解析>>

科目:高中数学 来源: 题型:044

用数学归纳法证明:

1×3×5……(2n-1)×2n=(2n)(2n-1)(1n-2)……(n+1)  (nÎN*)

查看答案和解析>>


同步练习册答案