精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=l,a2=3,an=|an-1-an-2|(n≥3),计算a3、a4、a5、a6、a7、a8、a9,…,推测a2009=(  )
A.0B.1C.2D.3
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=l,a2=3,an=|an-1-an-2|(n≥3),计算a3、a4、a5、a6、a7、a8、a9,…,推测a2009=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足:a1=l,a2=3,an=|an-1-an-2|(n≥3),计算a3、a4、a5、a6、a7、a8、a9,…,推测a2009=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省绍兴市诸暨市高二(上)期末数学试卷(文科)(解析版) 题型:选择题

已知数列{an}满足:a1=l,a2=3,an=|an-1-an-2|(n≥3),计算a3、a4、a5、a6、a7、a8、a9,…,推测a2009=( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2009年上海市黄浦区高考数学二模试卷(文科)(解析版) 题型:解答题

若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),证明:数列{an+1-2an}是等比数列,并进一步求出{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),证明:数列{an+1-2an}是等比数列,并进一步求出{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个点
(n∈N*,k、b均为非零常数).
(1)若数列{xn}成等差数列,求证:数列{yn}也成等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若点P满足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我们称
OP
是向量
OA1
OA2
,…,
OAn
的线性组合,{an}是该线性组合的系数数列.当
OP
是向量
OA1
OA2
,…,
OAn
的线性组合时,请参考以下线索:
①系数数列{an}需满足怎样的条件,点P会落在直线l上?
②若点P落在直线l上,系数数列{an}会满足怎样的结论?
③能否根据你给出的系数数列{an}满足的条件,确定在直线l上的点P的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.[本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对于任意x1,x2∈R,存在正实数L,使得|f(x1)-f(x2)|≤L|x1-x2|都成立.
(1)若f(x)=
1+x2
,求L的取值范围;
(2)当0<L<1时,数列{an}满足an+1=f(an),n=1,2,….
①证明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|

②令Ak=
a1+a2+…ak
k
(k=1,2,3,…)
,证明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当0<L<1时,对于任意x1,x2∈R,|f(x1)-f(x2)|≤L|x1-x2|都成立,数列{an}满足an+1=f(an),n=1,2,…
(1)证明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|

(2)令Ak=
a1+a2+…ak
k
(k=1,2,3),证明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|.

查看答案和解析>>

科目:高中数学 来源:2011年广西来宾市、百色市高三质量调研数学试卷(理科)(解析版) 题型:解答题

已知点Pn(an,bn)(n∈N+)满足,且点P1的坐标为(-1,1),设经过点P1、P2的直线为L.
(1)求直线L的方程;
(2)已知点Pn(an,bn)(n∈N+)在直线L上,求证:数列是等差数列;
(3)在满足(II)条件下,求对于所有n∈N+,能使不等式(1+a1)(1+a2)…成立的最大实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点Pn(an,bn)(n∈N+)满足数学公式,且点P1的坐标为(-1,1),设经过点P1、P2的直线为L.
(1)求直线L的方程;
(2)已知点Pn(an,bn)(n∈N+)在直线L上,求证:数列数学公式是等差数列;
(3)在满足(II)条件下,求对于所有n∈N+,能使不等式(1+a1)(1+a2)…数学公式成立的最大实数k的值.

查看答案和解析>>


同步练习册答案