精英家教网 > 高中数学 > 题目详情
已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为(  )
A.49x-9y-210=0B.7x-3y-42=0
C.49x-9y+210=0D.7x-3y+42=0
相关习题

科目:高中数学 来源: 题型:

已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为(  )
A、49x-9y-210=0B、7x-3y-42=0C、49x-9y+210=0D、7x-3y+42=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为(  )
A.49x-9y-210=0B.7x-3y-42=0
C.49x-9y+210=0D.7x-3y+42=0

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省杭州市高一(下)期末数学试卷(解析版) 题型:选择题

已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为( )
A.49x-9y-210=0
B.7x-3y-42=0
C.49x-9y+210=0
D.7x-3y+42=0

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州市高一(下)教学质量检测数学试卷(解析版) 题型:选择题

已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为( )
A.49x-9y-210=0
B.7x-3y-42=0
C.49x-9y+210=0
D.7x-3y+42=0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知直线l过点P(-3,7)且在第二象限与坐标轴围成△OAB,若当△OAB的面积最小时,直线l的方程为


  1. A.
    49x-9y-210=0
  2. B.
    7x-3y-42=0
  3. C.
    49x-9y+210=0
  4. D.
    7x-3y+42=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(1,
178
)且它的一个方向向量为(4,-7),又圆C1:(x+3)2+(y-1)2=4与圆C2关于直线l对称.
(Ⅰ)求直线l和圆C2的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试示所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第五次质量检测文科数学试卷(解析版) 题型:解答题

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
且点P(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
且点P(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)直线l与抛物线y2=8x交于A,B两点,且l经过抛物线的焦点F,已知A(8,8),则线段AB的中点到准线的距离为______
(2)已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC内,则x=______.

查看答案和解析>>


同步练习册答案