精英家教网 > 高中数学 > 题目详情
已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:(1)方程f[f(x)]=x一定有实数根;
(2)若a>0,则b2-2b-4ac+1<0成立;(3)若a<0,则必存在实数x0,使f[f(x0)]>-1(4)若a=b=c,则不等式b>
12
成立.其中,正确命题的序号是
 
.(把你认为正确的命题的所有序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,∫01f(x)dx=-2,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省茂名市电白县高二期中数学试卷(理科)(解析版) 题型:解答题

已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,∫1f(x)dx=-2,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,∫01f(x)dx=-2,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:(1)方程f[f(x)]=x一定有实数根;
(2)若a>0,则b2-2b-4ac+1<0成立;(3)若a<0,则必存在实数x0,使f[f(x0)]>-1(4)若a=b=c,则不等式b>数学公式成立.其中,正确命题的序号是 ________.(把你认为正确的命题的所有序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,∫01f(x)dx=-2,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,,求a、b、c的值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高一(上)12月月考数学试卷(解析版) 题型:选择题

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x使不等式f[f(x)]>x成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>


同步练习册答案